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BACKGROUND: Studies on the extent to which long-term exposure to ambient particulate matter (PM) with aerodynamic diameter ≤2:5 lm (PM2:5)
contributes to adult mortality in India are few, despite over 99% of Indians being exposed to levels that the World Health Organization (WHO) con-
siders unsafe.

OBJECTIVE:We conducted a retrospective cohort study within the Million Death Study (MDS) to provide the first-ever quantification of national mor-
tality from exposure to PM2:5 in India from 1999 to 2014.

METHODS: We calculated relative risks (RRs) by linking a total of ten 3-y intervals of satellite-based estimated PM2:5 exposure to deaths 3 to 5 y
later in over 7,400 small villages or urban blocks covering a total population of 6:8million. We applied using a model-based geostatistical model,
adjusted for individual age, sex, and year of death; smoking prevalence, rural/urban residency, area-level female illiteracy, languages, and spatial
clustering and unit-level variation.

RESULTS: PM2:5 exposure levels increased from 1999 to 2014, particularly in central and eastern India. Among 212,573 deaths at ages 15–69 y, after
spatial adjustment, we found a significant RR of 1.09 [95% credible interval (CI): 1.04, 1.14] for stroke deaths per 10-lg=m3 increase in PM2:5 expo-
sure, but no significant excess for deaths from chronic respiratory disease and ischemic heart disease (IHD), all nonaccidental causes, and total mortal-
ity (after excluding stroke). Spatial adjustment attenuated the RRs for chronic respiratory disease and IHD but raised those for stroke. The RRs were
consistent in various sensitivity analyses with spatial adjustment, including stratifying by levels of solid fuel exposure, by sex, and by age group, addi-
tion of climatic variables, and in supplementary case–control analyses using injury deaths as controls.
DISCUSSION: Direct epidemiological measurements, despite inherent limitations, yielded associations between mortality and long-term PM2:5 inconsistent
with those reported in earlier models used by the WHO to derive estimates of PM2:5 mortality in India. The modest RRs in our study are consistent with
near or null mortality effects. They suggest suitable caution in estimating deaths from PM2:5 exposure based on MDS results and even more caution in
extrapolating model-based associations of risk derived mostly from high-income countries to India. https://doi.org/10.1289/EHP9538

Introduction
Epidemiological studies of the health consequences of exposure to
particulate matter (PM) with aerodynamic diameter ≤2:5 lm
(PM2:5) have been conducted mostly in high-income countries
with lower levels of exposure than those in India. In 2014, average
Indian exposure to PM2:5 was 47lg=m3 based on satellite-derived
estimates (Brauer et al. 2016), with over 99% of India’s population
exposed to levels above the ceiling of 10lg=m3 recommended as
“safe” by the World Health Organization (WHO) (WHO 2006). In
India, household solid cooking fuels contribute to 20%–50% of
ambient PM2:5 exposure, a much higher proportion than in other
countries (Chowdhury et al. 2019). With such high levels of expo-
sure, even modest excess mortality caused by PM2:5 would result

in a substantial number of deaths. Indian hazards likely differ sub-
stantially from those studied in high-income countries given dis-
tinct disease patterns, including high age-standardized death rates
for ischemic heart disease (IHD) and stroke (Ke et al. 2018).

In the absence of nationally representative evidence on the
extent to which PM2:5 exposure increases cause-specific mortality
rates in India, the WHO and others have relied on modeled asso-
ciations that apply various complex transformations to hazards
observed in studies mainly in high-income countries (Burnett
et al. 2018). The WHO thus estimates that 1:1million Indians of
all ages died from exposure to ambient air pollution in 2016, to
which PM2:5 is the major contributor (WHO 2018). In these
model-based death totals, about three-quarters were from respira-
tory and vascular disease in adults. Here, we conducted a retro-
spective cohort study within the Million Death Study (MDS) in
India to quantify the association of cause-specific adult mortality
with long-term exposure to PM2:5. We focused on quantification
of the risks specific to the Indian population and considered mis-
classification of exposures and diseases. Given that many previ-
ous assessments have not appropriately considered clustering of
exposure and disease, we pay specific attention to showing the
variation in estimated risks with and without spatial adjustment.

Methods

Satellite-Based PM2:5 Estimates
We obtained satellite-derived modeled estimates of ambient PM2:5
data from 1998 to 2014 from van Donkelaar et al. (2015). Briefly,
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as described by Boys et al. (2014), van Donkelaar et al. (2015)
combined data from three types of satellite instruments together
with the GEOS-Chem chemical transport model (version 9-01-03;
http://geos-chem.org) to estimate global surface PM2:5 concentra-
tions at a resolution of 0.1 degrees (approximately 11 km at the
equator) for the period 1998–2012. The satellite-based data do not
distinguish between sources of PM2:5, which differ substantially
across countries (e.g., emissions from motor vehicles, industrial
facilities, household solid fuel use) and within India [e.g., in north-
ern India during seasons of crop burning, and in rural areas with
high levels of use of household solid fuels; Balakrishnan et al.
(2013)]. van Donkelaar et al. (2015) derived 3-y medians of the
annual satellite-based PM2:5 grids to reduce noise in the annual
satellite-derived values. In addition, van Donkelaar et al. (2015)
evaluated their 3-y medians of PM2:5 satellite-derived estimates
using data from established ground-level monitoring networks
in Canada, the United States, and Europe and collected 210
ground-based observations from the literature for areas outside
these regions. Correlations between satellite-based estimates
and ground-level data were stronger with more prolonged meas-
urements. For example, for ground data collected for a year or
less, the correlation coefficient, R, was 0.67, whereas R was
0.79 for ground-level data collected over 10 y. Correlations var-
ied also by region: for Canada and the United States, the R was
0.76; for Europe, the R was 0.73; and for the rest of the world
the R was 0.81.

With respect to India, van Donkelaar et al. (2015) evaluated
their PM2:5 estimates using 55 different locations (representing
>250 points in time) distributed over 24 major cities (Figure S1).
Although some high population density areas were not repre-
sented, all Indian mega-cities (population >4 million) except Surat
were represented. Using New Delhi as an example, the authors
reported a local underestimation in annual mean PM2:5 in compari-
son with ground observations that seemed to be amplified during
the winter season (Figure S2C). Similarly, the authors found that
the mean (population–weighted) PM2:5 concentration for South
Asia was 34:6 lg=m3 [standard deviation ðSDÞ=15:8] for the
period 2001–2010 and that concentrations increased by 2.9%/year
[95% confidence interval (CI): 2.2%, 3.6%] for this region in the
period 1998–2012.

We further compared alternative satellite PM2:5 data from the
public domain to ground monitoring data sources from various
locations and times (Supplemental Material, “Comparison of
PM2:5 Data Sources”). Table S1 lists these satellite-derived PM2:5
data sources together with a few ground-level sources, and
Figure S3 displays the various satellite-derived PM2:5 data for the
year 2010. We found that the data set by van Donkelaar et al.
(2015) has the highest correlation (0.88; p<0:001) with January
ground-level data (which is the peak month for PM2:5 exposure)
and the second highest correlation with the ground-level annual
averages (Figure S2A,B).

The MDS
Full details of the methods, strengths, and limitations of the MDS
have been published earlier (Aleksandrowicz et al. 2014; Dikshit
et al. 2012; Menon et al. 2019; Million Death Study Collaborators
2017). Briefly, in collaboration with the Registrar General of India,
the MDS monitored approximately 14million people in 2:4million
nationally representative households in India from 1998 through
2013 in the Sample Registration System (SRS) (RGI and Census
Commissioner 2011a). The sample frames comprised 6,671 (2001–
2003) and 7,597 (2004–2013) sampling units, typically villages or
small census urban blocks, drawn from the preceding 1991 and
2001 censuses, respectively. Nationally representative demographic

statistics can be derived from each sampling frame. Each sam-
pling unit undergoes population enumeration at the beginning
of each 10-y period. We used the 2004–2013 SRS sample
frame to assign PM2:5 estimates and deaths because we had
population denominators of the sampling units. Each sampling
unit comprised ∼ 150–300 households. The SRS follows the
population within these sampling units prospectively for a 10-y pe-
riod for any deaths. Every 6 months, ∼ 900 full-time, trained, non-
medical surveyors update the population composition in these
households, capture the date of death, and investigate each death
using a well-validated verbal autopsy instrument [based on the
WHO (2012) instrument, including a detailed two-page structured
list of symptoms and a half-page local language narrative of the
circumstances, symptoms, and treatments, if any, prior to death]
(Aleksandrowicz 2014). Each field report of a death is converted
to an electronic form and randomly assigned to 2 of 404 specially
trained physicians. The two physicians independently assigned a
cause of death based on the nonmedical surveyors’ field report
of the death, using the WHO’s International Classification of
Diseases-10th revision (ICD-10) (WHO 2004), according to the
cause-of-death assignment manual specifically designed for the
MDS (RGI, SRS Collaborators, and CGHR 2011; Menon et al.
2019). Where the two diagnoses did not agree, they underwent
anonymous reconciliation by the same two physicians, and a third
senior physician anonymously adjudicated persisting differences
(which occurred ∼ 18% of the time; Table S2). The percentage of
deaths requiring adjudication differed little by sex, urban-rural set-
ting, geographic region, or PM2:5 exposure level but was higher
among people older than 69 y of age (Table S2). Various quality
control procedures resulted in generally low levels of ill-
defined deaths before age 70 y, which is a robust measure of the
quality of the field collection and central physician assignment
of causes (Aleksandrowicz et al. 2014; Gomes et al. 2017).
Ethics approval for the MDS was obtained from St. John’s
Research Institute and St. Michael’s Hospital, Toronto, Canada.
All SRS participants provided oral consent at the beginning of
each sampling frame. Households were free to withdraw, but
<1% did so (Jha et al. 2006).

Deaths
We included the entire population who resided in the 2004–2013
sampling units. We focused on deaths from respiratory disease,
IHD, stroke (Ke et al. 2018), and all nonaccidental deaths (ICD-
10 codes shown in Table 1 footnote) at ages 15–69 y for the main
analysis (Table S3). Indian life expectancy in 2018 was 69 y, and
we used this age range to consider the younger age distribution of
vascular death in India than in high-income countries (Ke et al.
2018). Moreover, the verbal autopsy instrument has lower levels
of misclassification before age 70 y than above (Jha et al. 2019).
To minimize misclassification of causes, the main analyses was
of cause-specific deaths when both physicians initially agreed on
the diagnosis, a smaller number than based on adjudication. In
India, cardiovascular and respiratory diseases accounted for
∼ 30% of total adult deaths in the period 2010–2013 (RGI and
CGHR 2015). Lung cancer deaths are, as documented earlier,
uncommon in India (Dikshit et al. 2012; Jha et al. 2008) and
were too few to be quantified reliably.

Geocoding and Ambient PM2:5 Estimates Linkage
We geocoded 7,416 MDS sampling units using the postal codes
in urban areas and village names in rural locations. The SRS
records sampling areas as either rural or urban relying on estab-
lished Census of India’s definitions, based chiefly on population
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size and population density (RGI and Census Commissioner
2011b). Urban sampling units were geocoded to postal code
because postal code information was commonly available for the
death records, and rural sampling units to village locations
because rural sampling units are located within villages. Only
0.2% of urban sampling units and 4.0% of rural sampling units
could not be geocoded due to unavailability of postal code or village
information. Figure S4 displays the locations of the geocoded units.
We overlaid the geocoded sampling units on the grid cells of the
satellite-derived PM2:5 estimates. We performed exploratory analy-
ses on lag years of PM2:5 by linking the 3-y median of ambient
PM2:5 estimates to deaths that occurred 2–4 y, 3–5 y, and 4–6 y
later based on year of death (e.g., for a 3- to 5-y lag, 3-y medians of
1999–2001 for PM2:5 were linked to deaths from year 2004; see
Figure S5). We found that using lag 2–4 y would cause PM2:5 expo-
sures to be protective on respiratory disease and IHD, whereas using
lag 4–6 y the effect of PM2:5 exposures on stroke was smallest in
comparison with lag 2–4 y and lag 3–5 y (Figure S6). Thus, to be
consistent for all three disease outcomes and avoiding an implausi-
ble protective effect of PM2:5, we chose to use lag 3–5 y. Using the
3–5 y lag, the effect of PM2:5 exposures had stronger association
with respiratory and IHD mortality, and intermediate association
with stroke mortality (Figure S6). We assigned the 3-y median
PM2:5 values from the period of 1999–2010 (i.e., a total of ten 3-y
intervals) and linked 3-y median of ambient PM2:5 estimates to
deaths 3–5 y later in each village or urban block. We were able to
link 99.8% of deaths to a satellite-based PM2:5 estimates.

Statistical Methods
We modeled each individual’s mortality risk as a function of
individual-level risk factors (age and sex), sampling unit-level
risk factors (urban/rural, smoking prevalence), a time trend, and
spatially attributable risk factors (PM2:5, female illiteracy, domi-
nant language). Further, we allowed for random variation at the
unit-level and a smoothly varying spatial random effect. We used
model-based generalized linear geostatistical model (Diggle and
Ribeiro 2007), currently the state-of-art method for modeling
point-referenced spatial data in a hierarchical modeling frame-
work (Gelfand and Banerjee 2017). The approach is broadly sim-
ilar to the methods used by Bhatt et al. (2015) for estimating
malaria prevalence in Africa.

In our model, an individual in age–sex group j living in sam-
pling unit i at time t has a mortality risk kith, where h is the base-
line rate for group j in the Indian population, and kit is the
relative risk (RR). Because the probability of death in any given
year is small, we can approximate the binary-valued living/dead
response variable with the commonly used Poisson model for the
unit-level annual mortality counts (Lawson 2018). The RRs by
age and sex group are estimated by fitting a simple Poisson
regression model with age, sex, and time as explanatory varia-
bles; with a large data set the uncertainty in the estimated hj is
negligible. By treating these age–sex “reference rates” as fixed,
the observed death counts and age–sex adjusted expected counts
for each unit and year are sufficient statistics for making infer-
ence on the unit-level and spatial risk factors (see Li et al. 2012).
The resulting response variable Yit is the total death count at sam-
pling unit i and time t, which is Poisson distributed with mean
kitPit

Th, where Pit is the vector of population counts by age–sex
group j. Our model ignored multiple adult deaths in one house-
hold because these are rare (on average, 0.2% within 1 study
year) in the MDS. The model is fit separately for each outcome
(respiratory disease, IHD, and stroke).

Our models have the following formula for the RR kit for
individuals living in sampling unit i at time t:

Yit ∼PoissonðkitEitÞ
logðkitÞ=Xitb+Wðsi, tÞa+ g½PM2:5ðsi, tÞ; c�+UðsiÞ+Zi

Zi ∼Nð0, s2Þ
UðsiÞ∼Nð0,r2Þ

cor½Uðsþ hÞ,UðsÞ�=Maternðjhj=/; 1Þ:

Here Eit is the expected number of cases (see Supplemental
Material, “Statistical Methods”), si denotes the spatial location of
sampling unit i, Xit are covariates at the unit-level, and spatially ref-
erenced covariates are denoted (si, t). The satellite-derived PM2:5
value PM2:5 (si, t) has a nonlinear effect on risk, specified by the
function g(⋅) which can be thought of as a “wiggly” line. More spe-
cifically, g(⋅) is a second-order random walk with variance parame-
ter c, the smaller the value of c the straighter g(⋅) will be. To be
compatible with the most recent global exposure of mortality model
(GEMM) (Burnett et al. 2018), we assumed that PM2:5 exposure in
the range of 0–2lg=m3 (which is rare in India) had no effect on
mortality (values below 2 were discretized to the value of 2). The
Xit includes an intercept, a linear time trend, urban/rural residency,
and smoking prevalence (bidi or cigarette) in the sampling unit (i.e.,
percentage of smokers among the MDS survey respondents). The
spatially referenced covariates (si, t) include subdistrict-level (each
subdistrict area contains approximately 1–2 MDS sampling units)
percentage of female illiteracy (continuous; as a proxy for poverty)
and dominant language groups (as a proxy for cultural and dietary
differences, which may also be clustered geographically); both were
derived from the 2011 Indian census (Figure S7). We did not add
subdistrict-level solid fuel use from the 2011 Indian census as a
covariate because it contributes to ambient PM2:5.

To account for potential spatial variation, the model included
smoothly varying spatial random effects (i.e., spatial autocorrela-
tion or clustering) U(si). Similarly, we included independent unit-
level random effects Zi to account for sampling unit-level varia-
tion. Unlike the spatial effect U(si), two villages in close proxim-
ity can have very different values of Zi. Thus, the Zi can be
thought of as accounting for short-scale spatial variation or
village-level risk factors not included in the model as covariates,
whereas U(si) can be interpreted as representing any unknown or
unobserved spatially varying risk factors. The spatial random
effect U(si) has the correlation between the RRs at different sam-
pling unit locations specified by a Matérn spatial correlation func-
tion with a shape parameter fixed at 1.0. The spatial range
parameter / controls how quickly correlation decays with dis-
tance, with large values of / leading to smooth surfaces. The var-
iance parameter r2 controls the importance that this spatial effect
has in determining mortality risk, with r2 near zero correspond-
ing to a small effect (see Moraga 2019).

The regression coefficients b, a were given uninformative
normal priors. The prior distributions for s, r, and 1=/ have ex-
ponential priors following the “penalized complexity” framework
of Simpson et al. (2017). These priors discourage a spatial effect
[wanting U(si) flat and close to zero] unless the data indicate a
clear preference for a spatial model. When the posterior estimate
for r is far away from zero and its credible interval is relatively
narrow, there is evidence that spatial adjustment is necessary as
informed by the data.

We applied two additional variations on our model for the
main analysis. First, we treated PM2:5 exposure as a linear effect,
estimating RRs for a 10lg=m3 increase [with g(⋅) being linear
with a slope parameter]. Second, we ran linear and nonlinear mod-
els that did not include adjustment for spatial clustering, that is,
we omitted the U(si) term in our model (or equivalently set r=0).
We compared our results of nonlinear effects of PM2:5 to the
GEMM (Burnett et al. 2018) and the Prospective Urban Rural
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Epidemiology (PURE) study, which examined nonfatal vascular
events and deaths in about 750 communities in 21 countries
(Hystad et al. 2020). The cohort studies included in the GEMM
adjusted for individual characteristics and contextual variables,
but most studies did not include community-level random effects
or spatial random effects (Burnett et al. 2018). The PURE study
adjusted for individual- and household-level characteristics, geo-
graphic covariates, as well as community-level random effects.
We used R packages geostatsp (Brown 2015) and R-INLA (Rue
et al. 2009) for statistical analyses. We report the median RR or
excess risks (defined as RR minus 1) and 95% credible intervals
(CI) from the posterior distributions of the Bayesian estimates.
Further details of the model fitting and the prior distributions used
can be found in Supplemental Material, “Statistical Methods.”

We performed sensitivity analyses focusing on the linear effect
of PM2:5 with spatial adjustment (by the smoothly varying spatial
random effects) to explore whether the RRs of PM2:5 exposure dif-
fered across subgroups using stratifiedmodels. Interactions between
PM2:5 and other potential risk factors were explored by fitting strati-
fiedmodels.We stratified by age (15–44, 45–69, and 70 y and above),
by sex, in areas with high (87.3%–100.0%), medium (44.6%–87.3%),
and low percentage (0.4%–44.6%) of households using solid cooking
fuels (including firewood, crop residue, dung, and coal) at the
subdistrict-level. We obtain solid cooking fuel use percentages at the
subdistrict-level from the Census of India 2001 and 2011; the percen-
tages were linked to each death based on the residence locations, with
deaths from 2004–2005 and 2006–2013 used percentages from 2001
and 2011 censuses, respectively. We used tertiles to classify each
deceased individual into these high, medium, and low solid fuel use
levels. Stratification also included rural sampling units (urban sam-
pling units were too few to produce estimate reliably) and northern
vs. southern region of India (based on zonal councils https://www.
mha.gov.in/zonal-council). Additional sensitivity analyses excluded
language group from the covariates and included climatic variables.
For climatic variables, we included temperature and relative humid-
ity as covariates in the models.We obtainedmonthly gridded data of
2.5-degree resolution for surface temperature and relative humidity
(Kalnay et al. 1996). We calculated their annual monthly averages
and obtained 3-ymedians of these annual averages. Furthermore, we
explored the possible confounding effect of secondhand smoking ex-
posure by focusing on deceased females who lived with or without
male smokers as the SRS respondent in the household. Because very
few females in India smoke, women are the population most likely
exposed only to secondhand smoke (Jha et al. 2006).

Finally, we calculated odds ratio (OR) for chronic respiratory,
IHD, and stroke deaths as cases and injury deaths as controls (Table
S3). We used injury deaths as controls because in exploratory analy-
sis using 2001–2003 MDS deaths, we found that death rates for
injury deaths did not vary substantially by different levels of PM2:5
exposures (Figure S8). We fitted a logistic regression model with a
spatial random effect to the case or control status of each subject,
adjusting for individual sex, year, urban/rural residency, age (contin-
uous years), current smoking (none, only cigarettes, only bidi, both
as was done by Jha et al. 2008 and other studies using the MDS
data) interacted with sex, and subdistrict percentage of female illiter-
acy and dominant language groups derived from the 2011 Indian
census. As in the original cohort model, the logistic model included
terms to consider potential spatial and sampling unit-level variation.
The benefit of this “case–control” approach is to act as a check on
possible misclassification of PM2:5 exposures, which should not
affect injury deaths and cases differently.

Results
Over 99% of India’s population lived throughout the study period
in settings where satellite-based PM2:5 exceeded 10lg=m3. The

exposure to PM2:5 rose in India (3-y median of 25lg=m3 in
1998–2000 to 40lg=m3 in 2012–2014), with notable hot spots in
the north of India, south of the Himalayan mountain range, and
West Bengal (Figure 1). The level of PM2:5 varies by regions,
with central and eastern regions having the highest increase in
PM2:5 level and the southern region with the least increase
(Figure S9).

At ages 15 y or older, we excluded 1.2% of 96,359 respiratory
and vascular disease deaths because of missing covariates (Table
S4). The excluded population were slightly older, located in sam-
pling units with higher 3-y median of ambient PM2:5 satellite-
based estimates lagged 3–5 y and had other slight differences
from those included (Table 1; Table S4). The main comparison
was of 27,553 deaths from chronic respiratory disease, 42,950
from IHD and 24,940 from stroke, or a total of 95,443 deaths,
including 56,337 at ages 15–69 y (Table S3; Table S5–7), drawn
from a total population of 6:8million (Table 1). The remaining
deaths occurred above age 70 y (Table S8). Table 1 provides
summary statistics of the covariates by disease condition. At ages
15–69 y, the median ages at death from chronic respiratory dis-
ease, IHD, stroke, all-cause, and nonaccidental causes were older
than the median age of the Indian population, and hence all anal-
yses adjusted for age. Deaths from chronic respiratory disease
were more rural than in the overall population, had the highest
mean PM2:5 levels of exposure, more smokers in the sampling
unit, higher female illiteracy, and a higher percentage of solid
fuel use in the area than in the overall population. IHD deaths
occurred more in urban residents than the overall population, and
thus these deaths reported lower PM2:5 levels of exposure, fewer
smokers in the sampling unit, lower solid fuel use, and lower
female illiteracy. Stroke deaths showed levels of PM2:5 exposure,
smoking prevalence at sampling unit level, urban residence, and
female illiteracy at subdistrict-level that were generally similar to
those of the overall population. The geographic distributions of
the three main conditions were distinctive as evident from the
distributions by language group regions (Table S5; Figure S7A).
More deaths occurred in the northern region, with the exception
of IHD, which occurred more in the southern region (Table 1).

After adjusting for death year, urban/rural residency, smok-
ing prevalence in sampling units, subdistrict-level female illiter-
acy, and dominant language groups, the RRs at ages 15–69 y
for both sexes for every 10-lg=m3 increase in 3-y median of
ambient PM2:5 lagged 3–5 y varied with adjustment for spatial
clustering (Figure 2). The RR for chronic respiratory disease
deaths, which occurs at much higher rates in north India (RGI
and CGHR 2015), were substantially lower after spatial adjust-
ment, from 1.05 (95% CI: 1.03, 1.08) to 1.01 (95% CI: 0.96,
1.05), representing a nonsignificant 1% excess risk. Further
stratification for rural areas, and additional climatic covariates
led to only minor changes in the RR. Similarly, the RR for IHD
became nonsignificant after spatial adjustment, from 1.02 (95%
CI: 1.01, 1.04) to 1.00 (95% CI: 0.97, 1.03) and varying little in
rural areas or with additional climatic covariates (Figure 2). By
contrast, the RR for stroke was higher with spatial adjustment
[1.09 (95% CI: 1.04, 1.14)] than without spatial adjustment
[0.91 (95% CI: 0.89, 0.93)], representing a statistically signifi-
cant excess risk of 9% (Figure 2). For each of the above three
conditions, the OR for death compared to injury controls in the
case–control analyses showed similar results to the cohort analysis
(Figure 2). The association of PM2:5 exposure lagged 3–5 y with
all nonaccidental deaths varied only slightly without and with
adjustment for spatial clustering [RR 0.99 (95% CI: 0.98, 1.00) vs.
1.01 (95% CI: 1.00, 1.03), respectively]. For all-cause mortality,
the spatially adjusted RR was 1.02 (95% CI: 1.01, 1.03), and
remained statistically significant in the stratified analyses, except
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in the southern region (Figure 2). The 2% excess risk in all-cause
mortality was mostly driven by stroke mortality, as excluding
stroke from all-cause mortality risks yielded a nonsignificant RR
of 1.01 (95% CI: 0.99, 1.02). The RRs in the southern region were
consistently lower than in the northern region, but with wider cred-
ible confidence levels (Figure 2). The RRs excluding language
as a covariate were similar to the main results (Figure S10).
Table S9 provides the effects estimates for all covariates and
parameters of random effects for models with spatial adjust-
ment. The variance parameters for unit-level (s) and spatial

random effects (r) have narrow CIs and are far away from
zero, showing that both random effects are necessary to be
included in the models.

Table 2 presents results stratified by sex, age group, and dif-
ferent levels of solid fuel use. Results for men and women were
broadly similar, as were the results for ages 70 y or older.
Stratification by high, medium, or low levels of solid fuel use at
the local area also yielded broadly similar results, although the
RR for chronic respiratory and stroke deaths in men showed
higher RR than in women. Sensitivity analysis showed that the

Figure 1. Annual median satellite-based PM2:5 values in micrograms per cubic meter from 2012 to 2014 and trends nationally and for selected cities in
India from 1998 to 2014 (table). Three-year median of PM2:5 levels (in micrograms per cubic meter) for selected cities at different time periods are dis-
played in the figure table. PM2:5, particulate matter with aerodynamic diameter equal to or smaller than 2:5 lm. State administrative boundaries came from
the 2011 Indian census. We used a simplified version of the state boundaries, which was created in house. Map was created using R software (version 4.1.0;
R Development Core Team) with the “sp,” “raster,” “mapmisc,” and “RColorBrewer” packages. Note: *The proportion of population exposed to ambient
PM2:5 (annual median over the years 2012–2014) was weighted using the Gridded Population of the World (version 4) for the year 2010 (https://sedac.
ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11). †PM2:5 for all of India are population-weighted val-
ues from van Donkelaar et al. (2015).
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Figure 2. Linear RRs per 10 microgram per cubic meter increase in PM2:5 for chronic respiratory disease (n=13,185), IHD (n=29,834), stroke (n=13,318),
nonaccidental causes (n=177,686), and all-cause mortality (n=212,573) at ages 15–69 y, both sexes combined, from India in 2004–2013, for every 10 micro-
grams per cubic meter increase in PM2:5 with and without spatial adjustment and in various sensitivity analyses. Linear effects for RRs were estimated within
the generalized linear model framework, using the Poisson regression model. Models adjusted for death year, urban/rural residency, smoking prevalence in the
sampling unit, subdistrict-level percentage of female illiteracy, and dominant language groups (from 2011 Indian census) and included smoothly varying spatial
random effects and independent unit-level random effects. Box sizes are weighted by the sample sizes. Horizontal lines represent the 95% CI. Note: CI, credible
interval; IHD, ischemic heart disease; OR, odds ratio; PM2:5, particulate matter with aerodynamic diameter equal to or smaller than 2:5 lm; RR, relative risk.
*We fitted a logistic model within the generalized linear regression, adjusting for individual sex, death year, urban/rural residency, age (continuous years),
smoking (none, only cigarettes, only bidi, both) interacted with sex, and subdistrict percentage of female illiteracy and language groups. The logistic model
used injury deaths as controls, which were shown to have zero association with exposure to PM2:5 in a preliminary analysis based on MDS deaths occurring
from 2001 to 2003 and PM2:5 exposure levels in a special survey done in February 1998 (Figure S8). The reported estimates from the logistic model are OR.
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RRs for female deaths were broadly similar when stratified by
households with or without male smokers (Figure S11).

The estimated nonlinear models showed that RRs, without
adjustment for spatial clustering, at ages 15–69 y in both sexes
were higher with increasing levels of PM2:5 for chronic respiratory
and IHD deaths, but these RRs were lower notably with increasing
PM2:5 after adjustment for spatial clustering (Figure 3). By con-
trast, stroke deaths showed lower RR without adjustment but after
adjusting for spatial clustering, these RRs were higher with
increasing PM2:5. Similarly, nonaccidental and all-cause deaths
showed higher RR after adjusting for spatial clustering, with
increasing PM2:5 associated with higher RR. For all three condi-
tions, nonaccidental, and all-cause deaths, RRs at higher levels of
exposure had wide credible intervals.

The exposure–response relationships for chronic respiratory
disease and IHD deaths in the MDS were much flatter than the
modeled relationship of hazard ratios from the GEMM but were
more comparable for stroke deaths (Figure 4). The exposure–
response relationships of PM2:5 with mortality in the MDS were
similar to those of incident IHD or stroke in the comparable anal-
yses used by the PURE study (Hystad et al. 2020; Figure 4).
GEMM showed the steepest relationship at the youngest adult
ages, whereas the MDS showed no such differences by age
(Table 2). Even the 95% upper CI of the estimates showing RRs
of 1.05, 1.03 and 1.14, respectively, for chronic respiratory dis-
ease, IHD, or stroke (Figure 2), were considerably lower than the
mean GEMM modeled estimates (Burnett et al. 2018).

Discussion
To our knowledge, our large retrospective cohort study provides
the first nationally representative epidemiological evidence of the
association between cause-specific mortality and long-term PM2:5
exposure based on lagged satellite-derived PM2:5 exposure. We
find a statistically significant excess risk of 9% (range 4%–14%)
for stroke deaths at ages 15–69 y per 10-lg=m3 increase in exposure,
but no significant excess risks for chronic respiratory disease, IHD
deaths, or all nonaccidental deaths. The overall mortality excess risk
was 2% (range 1%–3%) but was nonsignificant once stroke was
excluded. The RRs included adjustment for both spatial and unit-
level variation in risks unexplained by covariates included in the
models and were consistent in various sensitivity analyses includ-
ing stratifying by age, sex, levels of solid fuel use, in rural areas,
and focusing only on the northern regions where PM2:5 exposure is
most widespread. Results on case–control analyses using injury
controls showed nearly identical results once spatial clustering
was considered.

The MDS association of PM2:5 exposure with IHD deaths is
consistent with a zero excess risk. Respiratory disease deaths also
showed close to a zero excess risk, although we noted higher risks
among men than women, perhaps reflecting the residual effects of
smoking history not captured in the community measures of smok-
ing prevalence (given that few women smoke in India). The story
for stroke is more nuanced and even our observed 9% excess risk
may not be real. Stroke mortality is lowest in several northern states
adjacent to the Himalayas: Punjab, Haryana, Rajasthan, Uttar
Pradesh, and Bihar (Ke et al. 2018), states which coincidentally
have the highest levels of satellite-measured ambient PM2:5 esti-
mates (Figure 1). In the analysis without spatial adjustment, there-
fore, PM2:5 appears to be protective against stroke, an artifact that
reduces with spatial adjustment. The model with spatial adjustment
looked for a consistent relationship betweenmore regional variation
in PM2:5 and stroke mortality. Once we considered a smooth spatial
effect to explain the large region of low strokemortality in the north,
we identified amodest but significant excess risk.

The RRs for adult respiratory disease mortality are modest in
comparison with published model-based estimates. Chronic respi-
ratory disease is more prevalent in the northern states, Rajasthan,
Uttar Pradesh, and Maharashtra (Salvi et al. 2018). For IHD,
higher prevalence is found in Punjab in the north and in Andhra
Pradesh and Tamil Nadu in the south (Menon et al. 2019). Thus,
deaths from chronic respiratory diseases (and to a lesser extent
IHD) cluster in the same areas as does PM2:5 exposure, even after
taking into account differences in subdistrict-level illiteracy rate or
sampling unit–level smoking prevalence. The PURE study, which
included community-level random effects in their models, also
showed a lower RR for nonvascular deaths. Our estimates for
stroke are comparable to the PURE results (Hystad et al. 2020).

The exposure variable is 3-y median of ambient and satellite-
derived PM2:5 estimates, which is widely used in environmental ep-
idemiology due to its availability. At a minimum, our results show
that the large RRs reported for satellite-derived PM2:5 elsewhere are
not reproducible in India. However, the MDS results are not directly
comparable to the modeling results from GEMM or the Global
Burden of Disease (GBD) for several reasons. First, although our
IHD RRs are comparable to the RRs in the PURE study and in
some of the larger studies that were inputs to the GEMM/GBD
meta-analyses, the modeled GEMM/GBD results comprise a meta-
analysis of 41 cohort studies, with various additional transforma-
tions to create exposure-hazard relationships. Unfortunately, most
of the input studies did not consider spatial clustering (Burnett et al.
2018). In contrast, the MDS estimates did not need to rely on any
prior assumptions about exposure–response relationships or trans-
formations of PM2:5 estimates, yielding markedly divergent expo-
sure–response curves for IHD and chronic respiratory disease but
more similar curves for stroke. Second, the range of 3-y median of
ambient PM2:5 estimates studied in the MDS is far larger (and cap-
tures much higher ambient PM2:5 levels) than the relatively narrow
range in the GEMM input studies. Last, the MDS RRs for the key
conditions are smaller in comparison with GEMM HRs—0% to 9%
excess mortality risks with a 10-lg=m3 increase in ambient PM2:5
exposure. Even for stroke, we did not observe the near 2-fold haz-
ards that GEMM reported for ambient PM2:5 exposure in highly
polluted areas (like Delhi and Varanasi), which are close to the
excess mortality documented for stroke from bidi or cigarette smok-
ing in India (Jha et al. 2008). Modest risks from ecological expo-
sures are difficult to quantify reliably. Hence, suitable caution is
warranted in interpreting the MDS evidence, and even more caution
is warranted in extrapolating GEMM/GBD’s current model-based
associations to India.

Our findings, if true, suggest a need for a substantial down-
ward revision of the WHO estimates (which effectively use the
GBD or GEMM results), which suggest that ambient PM2:5
accounts for 0:29million, 0:39million, and 0:14million deaths,
respectively, from chronic respiratory diseases, IHD, and stroke
at ages 25 y and above in India (WHO 2018). These model-based
estimates find that IHD contribute more than one-quarter of the
total mortality due to exposure to ambient air pollution in India
and worldwide (WHO 2018). However, studies linking ambient
PM2:5 exposure to IHD have been mostly done in high-income
countries where the levels of PM2:5 concentrations are lower and
the range of exposure narrower (Burnett et al. 2018; Kaufman
et al. 2016). We find a negligible association for IHD with PM2:5
exposure in India. This finding might reflect differences in the
susceptibility to PM2:5 in the Indian population and/or a differ-
ence in the composition and resulting toxicity of PM2:5 exposure
in India. On the exposure side, we cannot exclude possibly miss-
ing more refined PM2:5 exposure that could increase vascular
risk, such as ultrafine particles that may impact vascular end
points (Schulz et al. 2005) and that may differ across countries
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Figure 3. Nonparametric RR per unit (micrograms per cubic meter) increase in PM2:5 exposure for chronic respiratory disease (n=13,185), IHD (n=29,834), stroke
(n=13,318), nonaccidental causes (n=177,686), and all-cause mortality (n=212,573) at ages 15–69 y, both sexes combined, from India in 2004–2013, with and with-
out spatial adjustment. Nonparametric effects for RRs were estimated using the Poisson regression model. Models adjusted for death year, urban/rural residency, smok-
ing prevalence in the sampling unit, subdistrict-level percentage of female illiteracy, and dominant language groups (from 2011 Indian census) and included smoothly
varying spatial random effects and independent unit-level random effects. Solid curves are the median RR estimates; dotted curves are 95% CI (graph is limited to RRs
between 0.0 and 2.5). Vertical black arrows at x-axis indicate national population-weighted average exposure of 47 lg=m3 ambient PM2:5 in 2014. Note: CI, credible
interval; IHD, ischemic heart disease; RR, relative risk.
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(Burney and Amaral 2019) but are not well captured in satellite-
based estimates. Notably, the PURE study found a 3% significant
excess risk for vascular disease deaths with every 10-lg=m3

increase in PM2:5 exposure, but this excess risk disappeared
once adjustment was made for dust and salt in satellite-based
ambient PM2:5 estimates (Hystad et al. 2020). Thus, the effect
of PM2:5 exposure is highly sensitivity to the type of exposure
data and spatial adjustment. More speculatively, low levels of
PM2:5 exposure, which are uncommon in India, might play a
disproportionate role in increasing IHD (Papadogeorgou et al.
2019). Moreover, most IHD deaths in India involve conven-
tional risk factors such as smoking (Jha et al. 2008), elevated
blood pressure and blood lipids, and, unusually, low body mass
index (BMI) (Gajalakshmi et al. 2018; Ke et al. 2021). Although
our estimates of IHD mortality from ambient PM2:5 adjusted for
smoking prevalence in sampling units, it is possible that smoking
type and other risk factors measured at the individual level, such
as BMI, diet, alcohol drinking, education level, and medical his-
tory, might have confounding effect on the mortality–exposure
associations, as might access to effective treatments (Ke et al.
2018). In Chinese populations adjacent to northeast India, the rela-
tionship of ambient PM2:5 with stroke is largely with hemorrhagic
strokes (Chen et al. 2018). Because verbal autopsy cannot distin-
guish between hemorrhagic and occlusive strokes, it is possible
that the notably high stroke mortality in northeastern India noted
earlier (Ke et al. 2018) might represent a different relationship
than that found in China.

Several limitations exist in the MDS study, including mea-
surement error in the ambient PM2:5 estimates, the potential
omission of additional confounders (i.e., solid fuel use), and pos-
sible misclassification of the mortality outcomes. The key consid-
eration is whether these various forms of model misspecification
have attenuated our estimated RRs toward one, meaning we were
unable to detect modest but perhaps clinically relevant excess
risks. Overall, we do not believe we have systematically underes-
timated the RRs. First, adjustment for spatial clustering is appro-
priate for dealing with residual correlation in spatial data
(Dormann et al. 2007). Cohort analyses for the United States
have generally included random effects to represent spatial pat-
terns in the data and found that hazards were significantly
impacted by their inclusion (Krewski et al. 2009). Second, the
uncertainties that exist in our PM2:5 exposure assessment method
could cause either overestimation or underestimation of RRs (van

Figure 4. Comparison of exposure–response relationships of PM2:5 risk for
chronic respiratory disease (top panel, n=13,185), IHD (middle panel,
n=29,834), and stroke (lowest panel, n=13,318) deaths in GEMM, PURE,
and MDS from India, 2004–2013. Estimates are at various ages in GEMM
(based on hazard ratios) and incidence of IHD and strokes in PURE at
ages 35–70 y (based on hazard ratios) and in the MDS at ages 15–69 y
(based on RRs). GEMM composed of a meta-analysis of 41 cohort stud-
ies with various transformations to create exposure–hazard relationships.
Estimates for COPD from GEMM is not age specific. MDS estimates
were adjusted for death year, urban/rural residency, smoking prevalence
in the sampling unit, subdistrict-level percentage of female illiteracy, and
dominant language groups (from 2011 Indian census) and included
smoothly varying spatial random effects and independent unit-level ran-
dom effects. PURE estimates were adjusted for age, sex, baseline year,
smoking status, physical activity, PURE diet index score, waist-to-hip ra-
tio, INTERHEART risk score, use of solid fuels for cooking, education
level, household wealth index, occupational class, baseline cardiovascular
disease and chronic conditions, cardiovascular disease medication use,
hypertension, geographical covariates (urban or rural location, baseline
country gross domestic product per capita, Night Light Development
Index score, and a national or regional Health Care Access and Quality
Index), and community random effect (Hystad et al. 2020). The compari-
son is to PURE model 3, which the authors of the study indicate is their
preferred model. For GEMM’s estimates for IHD and stroke, younger
ages have higher hazard ratios (or steeper exposure–response curves)
than older ages. Shaded color band represent regions of 95% CI for MDS
estimates. Note: CI, credible interval; COPD, chronic obstructive pulmo-
nary disease; GEMM, global exposure of mortality model; IHD, ischemic
heart disease, MDS, Million Death Study; PURE, Prospective Urban
Rural Epidemiology.

Figure 4. (Continued.)
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Smeden et al. 2020). Any substantial daily variation in ambient
PM2:5 exposure is not likely captured in our use of 3-y medians
(Figure S12) and the coarse spatial resolution of satellite-derived
PM2:5 data (∼ 11 km) would also lead to smoothing out local
peaks and troughs, possibly biasing the mortality–exposure associa-
tion in either direction (Brenner et al. 1993, van Smeden et al.
2020). Because errors in measurements by satellites may also
differ by region, this would further complicate the bias direction
for the overall estimates. As with any analysis with ecological
variables, there is potential for the combination of confounding
and measurement error to cause bias in the results presented
here, although the bias will not necessarily cause effects to be
underestimated.

Third, separating household solid fuel use from other sources
of ambient pollution that contribute to satellite-based PM2:5 esti-
mates is difficult (Chowdhury al. 2019). However, the percent-
age of the population using solid fuel was broadly similar
between those who died and the overall population (Table 1),
and disease-specific RRs were similar in areas of high and low
solid fuel use (Table 2) and in the model assessing confounding
effect of secondhand smoking exposure among females (Figure
S11). Women have higher levels of exposure to solid fuel use than
men (Choudhuri and Desai 2020), so the broad consistency of the
RRs for PM2:5 exposure by sex also suggest that our RRs are not
likely to be greatly confounded by solid fuel use. Fourth, there are
inherent uncertainties of verbal autopsy assignment of cause of
death, even though the distinction between stroke and IHD deaths
is reasonably clear with more misclassification between IHD and
respiratory disease deaths (Jha et al. 2019). We addressed this
uncertainty by relying on dual physicians’ initial agreement on
the deceased person’s cause of death, which was independent
of PM2:5 level (Table S2). Nevertheless, there remain residual
uncertainties in the cause-of-death assignment even using these
strict criteria. Use of this strict criteria may also lead to capturing
fewer number of cause-specific deaths. Furthermore, such mis-
classification of causes is greater at ages 70 y or more, but we
observed similar RRs in this age group and in the younger age
group for the three causes. Our main results focus on ages 15–69 y,
where the number of ill-defined causes of death were low in com-
parison with older ages, to ensure higher accuracy in the reported
estimates. Moreover, the use of all nonaccidental deaths yielded
similar results to those for IHD and respiratory disease.

Fifth, our analyses have some limitations which are countered
by the fact that the sample was nationally representative and drawn
from over 7,400 discrete areas and that our models considered both
unit-level and spatially varying unmeasured risk factors. We had
fewer individual-level covariates than did the PURE study, but
our results were very similar. The PURE study also showed little
variation in RRs by adding more individual covariates (Hystad
et al. 2020). Use of community-level variables potentially intro-
duces residual confounding in the models. We minimized the
risk of residual confounding by adjusting for deprivation (via
female illiteracy), smoking prevalence in sampling units, vari-
ous sociocultural risk factors by including language, and, most
important, by the adjustment for unit-level variation and spatial
clustering. Moreover, we saw nearly identical results from case–
control analyses, where any bias affecting assessment of the am-
bient PM2:5 exposure in the cases should similarly affect assess-
ment of the exposure in control deaths. Our model does not
produce hazard ratios typically used in prospective studies. However,
our model is equivalent to a survival model, assuming (reasonably)
that the hazard function is piecewise constant changing every 5 y of
age. Because we are modeling a rare event, with nearly all the death
dates being right censored, a survival model with a spatial ran-
dom effect would be challenging to fit to a data set of this size.

Last, we do not report on childhood deaths, including childhood
pneumonia, which is the leading cause of childhood mortality in
India (MDSCollaborators 2017) and has been linked to PM2:5 ex-
posure (WHO 2018). However, the overall age-standardized
death rates from pneumonia at ages 0–4 y and 5–14 y have fallen
substantially in India from 2000 to 2015, including in the states
where PM2:5 exposure is most common (MDS Collaborators
2017; Fadel et al. 2019).

Given these uncertainties in our estimates, we did not derive
the population attributable risks, becausewe believe it is premature
to do so until direct epidemiological studies can further quantify
the relationship between ambient PM2:5 exposure and mortality
and establish causality (which model-based estimates presuppose).
Naturally, errors in measuring PM2:5 apply also to GEMM/WHO
estimates, which also rely on these satellite-based estimates.
Indeed, our study emphasizes the need for additional reliable
nationwide mortality studies that incorporate ambient PM2:5,
smoking, and other relevant risk factors in countries with relatively
high PM2:5 exposure. Better ground-basedmeasurement to capture
the spatiotemporal variations of PM2:5 exposures (such as daily ex-
posure near each residence) is warranted (Kaufman et al. 2016).
Our population model, ideally with individual-level smoking type
and other confounders and including examining possible interac-
tions between sex, age group, and solid fuel use, could help to
resolve some of the uncertainties in documenting mortality from
ambient PM2:5 exposure in China (Yin et al. 2017) and elsewhere.

However, action to reduce PM2:5 exposure is justified regard-
less of these uncertainties. There is substantial earlier evidence
and biological plausibility that chronic respiratory morbidity and
mortality in children from acute respiratory infection can be rea-
sonably attributable to PM2:5 exposure (Gehring et al. 2013).
Limiting air pollutant output from traffic, industrial, and house-
hold sources is a relevant strategy in India to reduce overall
PM2:5 exposure (Karagulian et al. 2015).
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