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Abstract
The majority of attempts to enumerate the homeless population rely on point-in-time or shelter counts, which 
can be costly and inaccurate. As an alternative, we use electronic health records from the Vancouver Island 
Health Authority, British Columbia, Canada from 2013 to 2022 to identify adults contending with 
homelessness based on their self-reported housing status. We estimate the annual population size of this 
population using a flexible open-population capture–recapture model that takes into account (1) the age and 
gender structure of the population, including aging across detection occasions, (2) annual recruitment into 
the population, (3) behavioural-response, and (4) apparent survival in the population, including emigration and 
incorporating known deaths. With this model, we demonstrate how to perform model selection for the 
inclusion of covariates. We then compare our estimates of annual population size with reported point-in-time 
counts of homeless populations on Vancouver Island over the same time period, and find that using data 
extracts from electronic health records gives comparable estimates. We find similarly comparable results 
using only a subset of interaction data, when using only ER interactions, suggesting that even if cross- 
continuum data is not available, reasonable estimates of population size can still be found using our method.
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1 Introduction
Homelessness is a difficult state to define, as individuals in identical situations may or may not 
identify as homeless based on their unique circumstances. In Canada, homelessness is defined as 
a lack of stable, safe, permanent, appropriate housing, or the immediate prospect, means and abil-
ity of acquiring it (Gaetz et al., 2012). However, individual jurisdictions within Canada have their 
own categories of homelessness which may not align with these categories. In addition to being 
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difficult to define, homelessness is difficult to measure or enumerate (Williams, 2010; Williams & 
Cheal, 2002), as persons contending with homelessness are considered ‘rare and elusive’. They 
constitute only a tiny proportion of the overall population, and not all persons contending with 
homelessness are ‘visible’ to the system, since they are less likely to appear on any kind of official 
list due to movement, location, or distrust of the system. For example, a city with more hostels and 
shelters provides more visibility than one with fewer, whereas poor weather can decrease visibility 
for point-in-time (PIT) counts (Wright & Devine, 1995). Policies against street homeless will de-
crease visibility for those living rough, but may change probabilities of detection for different 
groups who may be more likely to utilize shelter services.

Several methods of enumerating the homeless population are currently used in practice, the 
most common being PIT counts, including shelter counts and performing a street census. Other 
methods include snowball sampling (Dávid & Snijders, 2002) and network scale-up methods 
(Killworth et al., 1998; McCormick & Zheng, 2013), which involve using a social network ap-
proach where the social networks of subjects are used to recruit future subjects. However, these 
methods can be costly and are prone to inaccuracies, as several issues can arise when attempting 
to enumerate the population (Williams, 2010; Williams & Cheal, 2002). The first issue is under-
counting, since it is very easy to miss persons contending with homelessness because there are not 
enough volunteers performing counts or not every agency or organization that interacts with per-
sons contending with homelessness is contacted. Individuals may also purposely avoid being 
enumerated, by obtaining knowledge of a count happening, allowing them to hide or move during 
enumerations. Street canvases have been estimated to miss 40–70% of hidden homeless, especially 
hidden from public view at night, which is an issue because one of the conventional definitions of 
homelessness is lacking a fixed regular adequate night-time residence (Berry, 2007). Snowball 
sampling, where survey participants recruit additional participants from their social network, is 
commonly used for homeless populations (Forchuk et al., 2018; Kincaid, 2019). However, this 
method has the potential to exclude a sizeable portion of the population due to spatially clustered 
and age-stratified social networks—individuals who do not have overlapping social groups with 
the initial participants are less likely to be included in the study. The second issue is double count-
ing, which occurs because persons contending with homelessness are often spatially mobile, and 
can be counted twice in different neighbourhoods or cities. Additionally, counting occurs at mul-
tiple locations within the same city, such as food banks, shelters, and motels, which have overlap-
ping populations. Thirdly, since PIT counts are typically done by volunteers with little training, 
they are prone to bias. For example, there are problems with not correctly identifying persons con-
tending with homelessness, even if they are sleeping rough. There have been attempts at quality 
control, such as using decoys (Schretzman, 2016) or plants (Hopper et al., 2008). Many studies 
on homeless enumeration also assume that persons contending with homelessness would come 
into contact with one or more agencies, including the police, shelters, or places where they receive 
benefits (food or advice), (Gomez et al., 1999; Williams et al., 1995). Thus, those sleeping with 
friends or living in squats (Darab et al., 2018) are often invisible to these methods of counting. 
Finally, another problem arises from the process of how individuals enter and exit the state of 
homelessness. Homeless populations fluctuate in size, and it is difficult to quantify the speed or 
extent of the fluctuations.

Therefore, there is a need to develop statistical models to reduce these errors and biases. 
Improved methodologies for obtaining more accurate estimates are thus crucial for a better under-
standing of how persons contending with homelessness behave. Capture–recapture is an ecologic-
al method used to estimate population parameters of elusive or rare wildlife populations that has 
also been used for human populations when a census is impractical or impossible (Bird & King, 
2018). The method involves sampling the population, marking each sampled individual with a 
unique identifier, then releasing them back into the population. At subsequent sampling times, 
new samples are taken, which contain both individuals previously detected and newly detected in-
dividuals. Capture–recapture methodologies require two or more independent samples of the 
same population, for example, two sources that represent approximately the same population 
or the same source at two-time points. For example, Xu et al. (2014) and van Dam-Bates et al. 
(2016) used responses from multiple years from the I-track survey in Victoria (Epidemiology 
and Disease Control and Population Health Surveillance Unit, 2006), developed by the Public 
Health Agency of Canada to track changes in the prevalence of HIV and hepatitis C to estimate 
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population size of people who use injection drugs. From these data, it is possible to estimate pa-
rameters such as population size, survival rates, and detection probabilities. Capture–recapture 
has been used in some studies to enumerate homeless populations (Berry, 2007; Cowan et al., 
1988; Dávid & Snijders, 2002; D’Onise et al., 2007; Gomez et al., 1999; Williams et al., 1995) 
and also to estimate the morbidity of homeless populations (Fisher et al., 1994).

Past studies in Plymouth (Williams et al., 1995) and Torbay (Gomez et al., 1999) used a simple 
two-sample approach for capture–recapture: two samples were taken over a one-week period, re-
peated three times within a year in different seasons. The authors used a simple model as the bene-
fit of a more complex model would only be apparent with good data, and with the way data was 
collected, there were likely many violations of assumptions. Individuals were ‘tagged’ using unique 
identifiers of date of birth, name (or initials) and sex. Information collected included the type of 
current accommodation and length of stay. Berry (2007) performed another street-based cap-
ture–recapture study in Toronto, Ontario, where data was collected on 2 days in 2004 and 
2005. Observation criteria in this study was quite informal, observers assessed if individuals 
‘looked homeless’ before approaching by looking for criteria such as shopping carts, carrying 
many bags, sleeping on the sidewalk, panhandling or sifting through trash. They considered dif-
ferent models that allowed detection probabilities to vary by individual and by time. This study 
notes some issues with using street-based capture–recapture for homeless populations. Persons 
contending with homelessness cluster spatially and over time, for example, they may cluster 
around resources or shelters, and the time clustering may be because of weather, or cluster as 
part of a social group, thus violating the independence of individuals assumption. Street-based 
capture–recapture methods are the most suited for environments where the homeless have a fairly 
high probability of being sighted, which doesn’t hold in all urban settings.

The ability of using secondary use data that is already collected, such as electronic health re-
cords, which includes demographic information, including living situation, rather than conducting 
surveys or counts each time, as is the current standard, will substantially decrease costs and can 
also lead to more granular and frequent estimates. These data extracts also potentially remove 
one source of bias—where individuals are missed by counters and interviewers because they do 
not ‘look homeless’. To the best of our knowledge, data extracts from electronic health records 
have not yet been used with capture–recapture methodology to estimate homeless populations, 
mostly due to a lack of information about housing and living arrangements for patients. 
However, increasing amounts of information on patients are recorded and stored electronically, 
meaning that analyses such as the one within this article can be done more and more frequently 
in an increasing number of health authorities.

In this article, we explore the prospect of using electronic health records to estimate the 
annual population size of specific hidden or vulnerable populations. We propose a flexible 
capture–recapture model that can accommodate demographic information from electronic health 
records. Subsequently, we demonstrate our method through a case study on the adult homeless 
population of Vancouver Island, using data extracts from electronic health records provided by 
British Columbia’s Vancouver Island Health Authority (Island Health). We show that our method 
gives comparable estimates to existing PIT counts reported by the province of British Columbia.

Within Island Health, the homeless population accesses healthcare services more than four times 
as often as an individual who is housed. From 2013 to 2022, there is an average of approximately 
13.3 events in the service system per individual, but when we only account for the homeless cohort, 
this number increases to 58.8 events per individual. With hidden populations such as the homeless, 
an estimate of the total population size, in addition to the count of individuals who interacted with 
the service system, is imperative. This gives the number of individuals who are potentially at risk, 
for example, of freezing during the winter, or of contracting an emerging infectious disease such as 
COVID-19. These estimates can inform healthcare providers about healthcare load, aiding in pol-
icy decisions and service planning, and can guide shelter development and budgeting for harm- 
reduction services. The demand on the healthcare system can be estimated by generating cohorts 
of homeless individuals and looking at the utilization cross-continuum. However, demand will 
be underestimated if homeless persons are being underestimated.

We begin in Section 2 by describing the data from Island Health. Section 3 provides details our 
methodology, including model assumptions. Results are presented in Section 4, and current lim-
itations of the model are discussed in Section 5. Finally, Section 6 discusses future work using 
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data extracts from electronic health records to enumerate and quantify the healthcare needs of hid-
den populations, concluding the article.

2 Electronic health records from Island Health
Secondary use electronic health records from Island Health contains full longitudinal cross- 
continuum healthcare data for patients all over Vancouver Island from 1 April 2016 to 31 
March 2022. This study and the use of the data was approved by the University of Victoria’s 
and Island Health’s research ethics boards via a harmonized review (REB Number 
H20-02451). Partial data is available from 1 January 2013 to 31 March 2016; not all patient in-
teractions are recorded during this period, and there is incomplete documentation within interac-
tions. Island Health upgraded its data collection protocols on 1 April 2016 and started reporting 
to the British Columbia Ministry of Health for error catching processes to detect missing data, and 
thus the data is complete after that date. In the context of capture–recapture, the change in data 
reporting requirements suggest low detection probabilities as well as less precise estimates from 
2013 to 2016, as well as in 2022 as data is only available for the first quarter of the year.

We consider patients as being homeless if they satisfy at least one of the following criteria: 

1. Designated as homeless as part of the Decampment Initiative as of April 2020 (627 Patients), or
2. if the patient ever self-reported a housing status of ‘Absolutely Homeless’ or ‘Sheltered 

Homeless’ within the British Columbia Ministry of Health’s Minimum Reporting 
Requirements (MRR) for Mental Health and Substance Use (MHSU) data (1,692 Patients).

Within the MRR for MHSU, there are 17 different living arrangements, which describes where the 
client currently lives most of the time in the reporting period. Two of these arrangements, 
‘Absolutely Homeless’, referring to individuals living on the streets with no form of shelter, or 
‘Sheltered Homeless’, referring to individuals who sleep at crisis or community shelters, are 
used to define our cohort of interest. However, there are additional categories, such as, 
‘Precariously Housed’, which refers to individuals with no fixed address but who have temporary 
shelter through family or friends, such as through couch-surfing. Currently, there are 483 individ-
uals known to be within this housing category within Island Health. These individuals are at risk 
of becoming homeless, and can be easily included in the cohort of interest if warranted.

Of the 627 patients designated as part of the decampment initiative, 518 had a Forward 
Sortation Area (FSA, first three digits of postal code) recorded. Of those, 488, or slightly over 
94%, were in Greater Victoria. Of the 627 patients designated as part of the decampment initia-
tive, 362 had records in the MRR. Of these 362, 92 currently have a housing status of ‘Absolutely 
Homeless’ or ‘Sheltered Homeless’, 115 have a nonhomeless living arrangement, and 155 have an 
unknown living arrangement (Table 1). Although the majority of the individuals in the decamp-
ment cohort did not indicate a homeless housing status, since these individuals were identified 
as homeless as part of the Decampment Initiative, this takes precedence over their self-reported 
living arrangement.

Additionally, individuals within our dataset do not declare their housing status at every capture. 
As such, a large portion of individuals declare their housing status for the first time after their first 
interaction with Island Health. This phenomenon is evident in the breakdown of when patients 
were identified as homeless versus their first capture with Island Health (Table 2). For example, 
out of the 1,154 patients who had their first interaction with Island Health in 2016, only 413 de-
clared themselves as homeless in 2016, and the rest declared later. There are also some individuals 
who are identified as homeless prior to their first interaction with Island Health as part of the de-
campment initiative, or if there was a referral or initial contact (such as a phone call) where patient 
information was collected without an interaction taking place. Patients in the decampment initia-
tive, if they did not have an earlier housing status record, were considered to be identified as home-
less in April 2020. Out of the over 1 million individuals within the Island Health system, only 
73,505 have a MHSU MRR record and 24,439 indicated one of 17 possible living arrangements. 
Of these individuals with a reported housing status, more than half only have one record, and 
more than three quarters have two or fewer records. Additionally, there are no individuals who 
reported multiple different housing statuses. Despite how sparse the living arrangement data is 
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populated, we expect individuals who are unhoused or with precarious housing situations to be 
indicating their living arrangement (or be prompted to enter their living arrangement) much 
more often than those with stable living arrangements, and as such we expect the majority of 
the individuals who are experiencing a homeless living arrangement to update their housing status 
at some point. Due to the sparsity of housing status and the fact that there are no individuals with a 
housing status that changes through time as reflected in the data, we applied homeless status retro-
actively to captures. That is, if an individual ever had a housing status of ‘Absolutely Homeless’ or 
‘Sheltered Homeless’, then we consider them to have been captured in any year with at least one 
interaction, even if that year was before the date where they first indicated their housing status. 
Since this condition relies on self-reported living arrangements, we do expect bias arising from 
missing data, which will be discussed in Section 5.

From 2013 to 2022, a total of 1,31,039 events were recorded, with emergency response (ER) 
being the majority with 61,877 events, which is approximately 47.2% of the recorded events. 
MHSU and MHSU-Addictions events have a combined total of 46,272, approximately 35.3% 
of recorded events (Figure 1, top). ER and MHSU-Addictions are the most used services, as 
they have a low barrier of entry, as opposed to other services such as MHSU or Medical 
Imaging which requires a referral from a physician to access. This also suggests that individuals 
who do not have regular access to primary care may be utilizing ER services as an alternative 
(Kushel et al., 2002; Shortt et al., 2010; Vohra et al., 2022). We also consider the number of pa-
tients in the homeless cohort who have had at least one interaction with each service type (Figure 1, 
bottom). There were 2,136 patients who had at least one interaction with ER, 1,908 with MHSU, 
and 1,799 with MHSU-addictions.

Self-reported demographic information—each individual’s birthdate, gender, and death date (if 
applicable)—was used in this analysis. The proportion of individuals who are underhoused, varies 
greatly by various demographic groups. There is one patient who is under the age of 18 as of 31 
March 2022, and six patients, identified by the decampment initiative, who have no recorded in-
teractions with Island Health and no recorded demographic information, including age. We re-
moved these seven individuals to focus on modelling the population size of adults, leaving 
2,220 patients observed in this cohort. In this study, we focus on the adult homeless population. 
This is because other than the patients provided as part of the decampment initiative, living 

Table 1. Self-reported housing status of the 627 individuals within the decampment cohort

Homeless Not homeless Unknown

In MRR 92 115 155

Not in MRR 0 0 265

Total 92 115 420

Table 2. The number of patients identified as homeless (row) and who had their first interaction (column) in each year

Year declared Year of first interaction

Homeless 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total

2016 9 40 61 413 1 0 0 0 0 0 524

2017 3 11 41 187 133 0 0 0 0 0 375

2018 2 4 19 105 69 84 0 0 0 0 283

2019 2 6 8 78 20 27 64 0 0 0 205

2020 6 21 29 329 121 51 51 70 7 1 686

2021 1 0 3 36 26 9 6 9 31 0 121

2022 0 0 2 6 3 1 5 1 3 5 26

Total 23 82 163 1,154 373 172 126 80 41 6 2,220
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arrangement information is only available for patients who have had interactions with MHSU 
services. Minors who engage with MHSU services who are found to be experiencing precarious 
housing situations are typically immediately referred to arrangements such as foster care and 
thus will never have a homeless housing status. Additionally, there are recorded death dates for 
112 individuals within this population, that is, 112 individuals are known to have died between 
1 January 2013 and 31 March 2022.

In both the 2018 and 2020/2021 reports on homeless counts in British Columbia, published by 
the Homelessness Services Association of British Columbia (Homelessness Services Association of 
BC, 2021; Homelessness Services Association of BC and Urban Matters and BC Non-Profit 
Housing Association, 2018), the gender breakdown was 68% male and 32% not male, which 
is similar to the Island Health data which has 69% male and 31% not male within those self- 
reported as homeless. Specifically, there are 691 females, 1,528 males, and 1 patient of unknown 
gender. For our purposes, we divide the patients into two groups: 1,528 ‘Male’ and 692 ‘Not 
male’. Table 3 breaks down the population by gender and their living status as of 31 March 
2022, and gives the average age of each gender for those individuals alive on 31 March 2022 
(also see Figure A1 in Appendix A).

The gender structure of the homeless population suggests that individuals of different genders 
have different risk factors for homelessness, as well as different patterns of interactions with the 
healthcare service system (McGrath et al., 2023; Winetrobe et al., 2017). For example, women, 
particularly young women with children, are more likely to be undercounted by PIT counts, as 
they are more likely to leverage their social connections to stay out of shelters and off the streets 
(Novac et al., 2002). By using secondary use electronic health records, demographic information 
including gender has already been collected, so the impact of gender can easily be modelled to 
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Figure 1. The frequency of service access of the top 20 most frequently used Island Health services from homeless 
patients (top) and number of patients who have accessed each service (bottom).
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ensure that results are applicable across various healthcare authorities and can be reproduced 
when new data is obtained, even if the new data does not have the same gender breakdown, en-
suring results are representative of all individuals.

3 Methodology
3.1 Model formulation
We use a Jolly-Seber model (see King, 2012) to estimate population size. Individuals are ‘tagged’ 
with their unique healthcare number and individuals are sampled at the time they access a health-
care service. Although the detection history is on a continuous timescale, rather than using a 
continuous-time capture–recapture model where each detection is considered an occasion 
(Altieri et al., 2023; Borchers et al., 2014; Chao & Lee, 1993; Hwang & Chao, 2002; Rushing, 
2023; Wilson & Anderson, 1995), we aggregated detections within each year, and considered 
an individual detected in year t if they had at least one interaction with an Island Health service 
in that year. We consider each patient to be detected in a specific year if they have at least one inter-
action with an Island Health service, regardless of what service they used. This violates the instant-
aneous sampling assumption of the capture–recapture model; we will touch on this in Section 3.3.

We use data augmentation in a Bayesian state-space framework as described in (Kéry & Schaub, 
2011, Chapter 10) to estimate the total and the yearly population size; also see (King, 2012; 
Newman et al., 2023) for more discussion on data augmentation. We have nobs individuals in our data-
set, and an augmentation value of M, that is, we add M − nobs rows of patients who have had no de-
tections and unknown demographic information. For this study, we had nobs = 2,220 and we 
augmented an additional 2,780 rows, for a total of M = 5,000. Each of the M individuals in the aug-
mented population has a latent inclusion variable zi, where zi = 1 if individual i is part of the super-
population and zi = 0 if not. We assume that zi ∼ Bernoulli(ψ) where ψ is the probability that an 
individual in the augmented population is a part of the superpopulation. In our case, the superpopu-
lation consists of any adult individual who experienced homelessness in Vancouver Island at any point 
between 2013 and 2022 and was susceptible (probability > 0) to using the healthcare system at any 
point between 2013 and 2022. This is in contrast to when we refer to the ‘population’ at a specific 
time t, which refers to individuals who are susceptible to using an Island Health system at the time t.

We use the superpopulation formation of Schwarz and Arnason (1996), where annual births are 
modelled using a multinomial distribution from a superpopulation. That is, if an individual is part 
of the superpopulation, they must be ‘born’ or otherwise be recruited into the population during 
any one of the K = 10 detection occasions, where the entry probability at time t is βt, and 
K

t=1 βt = 1. In our case, since we are only including data from adults, being ‘born’ refers to an 
ever-homeless individual becoming susceptible to using an Island Health healthcare service for 
the first time. That is, an individual could have moved to Vancouver Island, or experienced a 
healthcare event that necessitated accessing care for the first time. For each time t, the conditional 
probability of entering the population, given that the individual has not already entered, is βtK

j=t
βj

.

Following the Bayesian state-space formulation described by King (2012), we let the M by K 
observation matrix, or detection history matrix be ω, where entry ωi,t is 1 if the individual i is de-
tected at time t and zero otherwise. That is, the (i, t)th element is 1 if the patient i had at least one 
interaction in year t (i.e. was detected in year t) and 0 otherwise. Further, the state matrix u has 
elements ui,t = 1 if the individual i has entered the population by time t and has not yet left the 
population by time t, and 0 otherwise.

Table 3. Summary of gender, deceased status, and mean age on 31 March 2022

Gender # Not deceased # Deceased Mean age on 31 March 2022 (if not deceased)

Female 661 30 40.3

Male 1,446 82 44.3

Other 1 0 49.0
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We assume

ωi,t | zi,t, ui,t ∼ Bernoulli(pi,tziui,t).

That is, if an individual i is not in the superpopulation (zi = 0), has not yet entered the population 
by time t or left the population prior to time t (ui,t = 0), the probability of detection is 0.

Further, we assume

ui,1 ∼ Bernoulli (β1), if t = 1,

ui,t |ui,j, j = 1, . . . , t − 1 ∼ Bernoulli ϕi,t−1ui,t−1 +
βt

K

j=t

βj

t−1

l=1

(1 − ui,l)

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

, if t > 1.
(1) 

Thus, for an individual to be available for detection at time t, they have to either be ‘born’ or re-
cruited at time t if they were never recruited prior to time t, or they were available for detection at 
time t − 1 and survived to time t. In our case, ‘dying’ can refer to a physical death, or a permanent 
emigration from the service area of Island Health.

We modelled the detection probability of an individual i at time t, pi,t by

logit(pi,t) = α0,t + α1mi + α2ai,t + α3(1 − fi,t), (2) 

Here, mi is 1 if individual i is male and 0 otherwise, and ai,t is the age of the individual i at the sam-
pling time t—calculated at 31st December of the year t. The behavioural-response, or first detec-
tion indicator, fi,t is 1 if individual i has not been detected prior to time t and 0 otherwise. That is, 
we model a permanent behavioural-response, rather than an immediate one where individuals can 
revert to their original naive state if missed, such as in (Pradel & Sanz-Aguilar, 2012). We expect 
the existence of a behavioural-response to exist as individuals who have utilized services are more 
likely to re-visit, for example, for follow-up care, or to utilize other services in the Island Health 
system after being made aware of them through, for example, referrals. The baseline detection rate 
is time-varying, but the effect of age, gender, and behavioural-response are not. We also modelled 
the survival probability of an individual i from t to t + 1, ϕi,t dependent on both age and gender, as

logit(ϕi,t) = α4,t + α5mi + α6ai,t. (3) 

Since demographic information is only known for detected individuals and not augmented indi-
viduals, we treated age and gender of individual i at year 1 as latent random variables if unknown, 
similar to how age is treated in (Hostetter et al., 2021). Specifically, we have

mi ∼ Bernoulli(πm) and

ai,0 ∼ Truncated Normal(μa, σ2
a , 0, 100), 

where ai,0 is the age for individual i at 1 January 2013 and each individual aging one year per cap-
ture occasion. We used standard model selection techniques, discussed in Section 3.2, to determine 
which covariates, of age, gender, or behavioural-response, to include in equations (2) and (3).

We used vague noninformative priors (Banner et al., 2020) for our population parameters as 
follows:

ψ, expit(α0,t), expit(α4,t) ∼ Beta(1, 1),

β1 : K ∼ Dirichlet(1, . . . , 1),

α1, α2, α3, α5, α6 ∼ Normal(0, σ = 30), 
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For demographic information, we used the following priors:

πm ∼ Beta(1, 1),

μa ∼ Normal(40, 20), and

σa ∼ Inverse Gamma(5, 10).

Here, ‘logit’ and ‘expit’ are the logistic and inverse logistic transformation, respectively.
Finally, our estimates of interest are the annual population size, Nt =

M
i=1 ui,tzi, and we com-

pare the estimates of the annual population size of Nt with the PIT counts. This parameterization, 
where ‘alive in year t’ (ui,tzi) is modelled as the product of two variables, follows (Kéry & Schaub, 
2011, Chapter 10.3.3). An alternative equivalent parameterization where the two are modelled 
together is also possible. In this case, equation (1) would be modified such that zi is multiplied 
by the Bernoulli probability, and then ui,t would represent ‘alive in year t’.

Parameter nonidentifiability, or when parameters are not estimable, occurs in the Jolly-Seber 
model (Schwarz & Arnason, 1996) and other complex ecological models. In particular, without 
individual covariates, ϕi,K−1, pi,K, the last survival and the last detection probability, are not iden-
tifiable individually—it is only possible to estimate their product. Likewise, β1 and pi,1, the first 
detection probability and the first recruitment probability, are not identifiable individually, and 
it is only possible to estimate their product. Since they are not individually estimable, we remove 
this source of extra variability by setting pi,1 =

M
i=1 ωi,1/

M
i=1 ui,1, which is 1 if u is populated us-

ing the information from ω for all i. We also set ϕi,K−1 = 1 − (
M

i=1 (1 − ui,K) − s
M

i=1 ui,K−1)/M, 
which is simply 1—proportion of individuals who were alive at the time K − 1 who were 
known to have died before time K, for all i. Given these constraints to the model, the population 
size for the first and last years should be discarded—setting pi,1 to be close to 1 will inflate the 
estimates of β1 and thus deflate the estimates of N1. Likewise, setting ϕi,K−1 close to 1 inflates 
the estimates of NK. As such, estimates for the years 2013 and 2022 are not reported. See (Kéry 
& Schaub, 2011, Chapter 7.9 and Chapter 10.6) for further discussion on parameter 
identifiability.

For inference and parameter estimation, we use a Bayesian approach with Markov chain Monte 
Carlo (MCMC); we used NIMBLE v0.13.0 (de Valpine et al., 2022) software, accessed via R 
v4.1.3 (R Core Team, 2022) to implement the MCMC simulations and to fit models. Initial values 
and data must be passed to NIMBLE. In particular, values of ui,t and zi must be passed to prevent 
initialization errors and to speed up convergence. If individual i is known to be in the population, 
i.e. there are records for them in the Island Health database, then zi is set to 1. Otherwise, zi is set to 
NA, as it is unknown. Similarly, if individual i has interactions at time t1 and t2, then we set ui,t to 
be 1 for all t1 ≤ t ≤ t2, and otherwise NA. That is, ui,t is 1 between the first and last time seen (in-
clusive) and NA otherwise.

3.2 Model selection
A limitation of our model is the computational demands, especially when the number of individ-
uals in the population is large. All model fitting was performed on a virtual machine environment 
at Island Health with an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz processor with 15.6 GB of 
memory, as due to data privacy constraints, exporting the data to run on an external machine or 
server is not possible. Thus, due to these computational limitations, we employed a two-step pro-
cess for model selection and parameter estimation: preliminary model selection was done with a 
single chain with a smaller number of iterations and then the selected final model was fit using 
three longer chains. If computational restrictions were not present, then this two-step process 
would not be required. For our preliminary model selection step, we used one MCMC chain 
with 50,000 iterations, with the first 20,000 being discarded for burn-in. The final selected model 
was then run with three chains, 1,50,000 iterations each chain, and the first 50,000 iterations were 
discarded for burn-in. The burn-in amount and number of iterations needed for convergence was 
chosen manually using convergence plots. Convergence was also confirmed with the Gelman– 
Rubin statistic (Gelman & Rubin, 1992), which was less than 1.1 for almost all the parameters 
of interest, suggesting convergence (Brooks & Gelman, 1998). We did not thin the observations 
(Link & Eaton, 2012) as we did not have problems with memory.
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Due to systematic changes in how data was collected and stored as well as underlying changes to 
the risks of homelessness over the years, only time-varying survival and detection probabilities 
were considered. Thus, all models we considered have time-varying baseline survival and detection 
probabilities. Notation for referring to models is from (Lebreton et al., 1992). In our notation, t 
denotes time-varying, g denotes gender, a denotes age, and b denotes behavioural-response. An 
additional model with time-varying behavioural-response, gender, and age, denoted ϕagt, pagb∗t 
was also considered. That is, instead of equation (2), we modelled the capture probabilities 
with logit(pi,t) = α0,t + α1mi + α2ai,t + α3,t(1 − fi,t). In total, we considered the following nine com-
binations of covariates: 

1. Time-varying behavioural-response, gender, age (full model with time-varying behavioural- 
response) ϕagt, pagb∗t

2. Behavioural-response, gender, age (full model) (ϕagt, pagbt),
3. Gender, age (ϕagt, pagt),
4. Behavioural-response, age (ϕat, pabt),
5. Behavioural-response, gender (ϕgt, pbgt),
6. Age (ϕat, pat),
7. Gender (ϕgt, pgt),
8. Behavioural-response (ϕt, pbt),
9. No covariates (ϕt, pt).

We used widely applicable information criterion (WAIC) (Gelman et al., 2014; Watanabe & 
Opper, 2010) for model selection. WAIC in NIMBLE is calculated conditioning on all parent no-
des of the data nodes. Since demographic information is treated as a latent random variable and 
thus part of the model; the uncertainty from populating demographic information contributes to 
the WAIC for all models except ϕt, pt. For WAIC to be comparable between models, demographic 
information must be populated even for the models that do not require it, as otherwise, the data 
within the model are essentially being changed. That is, age and gender are included in the data for 
all models, regardless of their inclusion in equations (2) and (3). If data augmentation is not used 
and there are no individuals with missing demographic information, or missing demographic in-
formation is imputed prior to model fitting, this step is not necessary, as there would be no uncer-
tainty from populating missing demographic information contributing to the likelihood and thus 
WAIC. An alternative is to compare WAIC using the conditional likelihood that ignores the con-
tribution to the likelihood that the random unobserved covariate values give, by marginalizing 
over those nodes using the controlWAIC() argument. However, this increases computation 
time and due to constraints in computational power, we did not opt for this method. 

3.3 Assumptions of the Jolly-Seber model
There were several assumptions of the Jolly-Seber model that were violated in our scenario and 
might have an effect on our estimates. 

1. Individuals who are detected have the same patterns of behaviours (detection and survival) as 
those who are not detected. That is, they are representative of our population of interest. 
However, this does not hold in reality if we consider our population to be all the persons con-
tending with homelessness within Vancouver Island—there are individuals who will likely 
never use Island Health services for various reasons, including distrust of the system, or 
due to systematic barriers to healthcare access. Thus, we must consider our population to 
be that of adult homeless who are within Island Health jurisdiction and will potentially utilize 
Island Health resources.

2. Markers do not affect the behaviour of the marked individuals. This assumption is likely 
violated, as there may be a behavioural-response, where there is a change in the behaviour 
of subjects’ after being ‘trapped’, or detected for the first time. Individuals can exhibit either 
trap-happiness or trap-shyness, when they are more or less likely to return after the first detec-
tion, respectively. For example, persons contending with homelessness who utilize Island 
Health services may be incentivized to return. For example, an individual staying overnight 
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at the sobering assessment centre may be likely to return to have a bed for the night. In addition, 
follow-up care or long-term treatment for specific health concerns can also cause an individual 
to be more likely to return. As such, we include behavioural-response in our model, to account 
for this.

3. Marking is accurate and reliable—no lost or misread marks. Since we are using each individ-
ual’s unique healthcare number as their mark, we can assume that marks are not lost or 
misread. However, as we will discuss in Section 5, an issue arises where there exists individuals 
where we have the capture history, but we do not know to include them in our population. This 
is because there is a lag between an individuals’ first recorded interaction and the time that they 
are declared homeless. This primarily affects estimates for later years, individuals who are cap-
tured in earlier years have more time to indicate their homeless housing status and have their 
capture history included. In ecology, a similar, but not identical scenario may arise if sexes of a 
certain species look identical and are thus indistinguishable until females are seen with young 
or spawning, such as the Dolly Varden trout (Gallagher et al., 2019), but an interest lies in es-
timating the population size of females.

4. Every marked individual has the same probability of detection. We address heterogeneity in 
detection probability by stratifying using demographic information such as age and sex, due 
to the differing underlying morbidity rates.

5. Individuals are independent. This assumption is likely violated due to the existence of social 
groups. With data privacy concerns, there is no way to determine family units within the cur-
rent data; however, we may be able to account for social groups with data that is not anony-
mized. In addition, even with the existence of social groups, individuals within the groups 
typically access healthcare services individually, as they are accessed on an as-needed basis. 
This is different from ecological studies, where family units are often trapped or detected to-
gether (Draghici et al., 2021).

6. Sampling is instantaneous. This condition is violated, as we have continuous sampling occa-
sions. This is one of the most commonly violated assumptions, and violation of this assump-
tion results in heterogeneity, as members of the marked population do not have the same 
probability of survival between sampling occasions. For example, an individual who had 
an interaction with the healthcare system on 1st January of 1 year will need to survive for 
12 months longer than an individual who had an interaction on 31st December of that 
year to survive to be detected the following year (Smith & Anderson, 1987). However, due 
to the low death rates in this population, this is likely not a concern.

Heterogeneity and lack of independence arising from the violation of these assumptions is collect-
ively considered to be overdispersion, which, if unaccounted for, can result in underestimated var-
iances for parameters and thus undercoverage in the credible intervals (Lindberg & Rexstad, 
2006). Although not all assumptions of the model are met, violation of the assumptions is gener-
ally not deleterious (Lindberg & Rexstad, 2006), and the model still gives us a good understanding 
of the population of interest.

4 Results
Table 4 gives the WAIC values and the Bayesian posterior predictive p-values Gelman et al. (1996)
associated with the Freeman–Tukey statistic for evaluating goodness of fit (see (Kéry & Schaub, 
2011, Chapter 7.10) and Brooks et al. (2000) for more discussion and an implementation) for 
each of the above models. There is no evidence of a lack of fit for any of the models, as the p-values 
are approximately 0.5 for all models. Under the null hypothesis that the model used is in fact the 
data-generating model, p-values close to 0 or 1 indicate a lack of fit. In our case, we begin with 
the saturated model, as including demographic information and behavioural-response have been 
shown to improve precision and bias of estimates, and we perform model selection to determine 
if any covariates should be removed, and it was found that removing them was not necessary. As 
such, based on our model selection criteria, the model we proceeded with is ϕagt, pagbt, with 
behavioural-response, gender, age incorporated, and time-varying baseline survival and capture 
probabilities.
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Past 2016, when data is better recorded, the estimates between the nine methods are quite similar, 
regardless of which model is used (Figure 2, Table C1 in Appendix C). In the earlier years, including 
demographic information, and notably, including behavioural-response, prevents underestimation of 
the annual population size. This is important, as we expect the significant difference in the number of 
observed individuals before and after 2016 to be due to the different data-reporting requirements, re-
sulting in less interactions being recorded, meaning lower detection probabilities, and not due to a sig-
nificant change in the population size of the homeless population. In all years, including 
behavioural-response in the model prevents underestimation of the annual population size (triangle 
markers). This suggests that individuals are indeed more likely to return after their first interaction 
with the healthcare system. Indeed, not accounting for a trap-happy response can lead to bias; under-
estimating population size in the Jolly-Seber model (Nichols et al., 1984; Pradel & Sanz-Aguilar, 
2012), and we are correct in our decision to model a behavioural-response.

Due to the violation of Assumption (3) in Section 3.3, we observe an artificial drop in population 
size estimates in the later years. This is discussed in detail in Section 5, but we only display results 
prior to and including 2019 within the main body of this article. Stability of the homeless popu-
lation size estimates greatly increases after 2016 (when more stringent data reporting requirements 
led to complete data being collected). Thus, as we expect more accurate and complete medical re-
cords and patient interaction records to be collected going forward, more accurate estimates of the 
homeless population or other populations will be easier to acquire using these records. Estimates 
from all years are available in Appendix C.

PIT counts are available for 2018 (1884) and 2020/2021 (2149) for Vancouver Island. Details 
about which jurisdictions were included for these reported PIT counts can be found in Appendix B. 
We note that these counts, which enumerate sheltered and unsheltered homeless people, cannot be 
directly compared with our estimates, for two main reasons: (1) The PIT counts include children, 
and (2) the PIT counts include those who have not, and will never need to interact with Island 
Health services. Additionally, the majority of the patients designated as homeless in the Island 
Health cohort were designated by the MHSU MRR, meaning that they have used a MHSU service 
in the past. However, there were very few children (2.86% in 2018 and 2.56% in 2020/2021) in 
the PIT counts in all of British Columbia, and a substantial amount of the individuals surveyed for 
the PIT counts reported having a mental health issue (44% in 2018 and 51% in 2020/2021) or an 
addiction (56% in 2018 and 67% in 2020/2021). Thus, although we are not enumerating exactly 
the same population and neither population is a subset of the other, we expect the populations re-
ported in the PIT counts and our estimates to have significant overlap. The PIT counts are a useful 
comparison, providing a method to validate our estimates.

From our results from our final model, ϕagt, pagbt (Figure 2, Table C2 in Appendix C), the cap-
ture–recapture model gives estimates that are sensible, implying that enumeration of persons con-
tending with homelessness can be done with electronic health records instead of costly PIT counts 
in the future. We also note that the point estimates (and 95% CIs) of the coefficients for gender are 

Table 4. Model selection results using Island Health electronic health records from 2013 to 2022

Covariates included Model WAIC ΔWAIC GOF p-value

Time-varying behavioural-response, gender, age ϕagt, pagb∗t 42,683 1,019 0.50

Behavioural-response, gender, age ϕagt, pagbt 41,664 0 0.50

Gender, age ϕagt, pagt 42,125 461 0.50

Behavioural-response, age ϕat, pabt 42,096 432 0.49

Behavioural-response, gender ϕat, pat 42,377 713 0.50

Age ϕgt, pbgt 42,400 736 0.49

Gender ϕgt, pgt 41,997 333 0.50

Behavioural-response ϕt, pbt 42,915 1,251 0.50

No covariates ϕt, pt 42,232 568 0.50

Note. ΔWAIC denotes the difference in WAIC between that model and the minimum WAIC.
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−0.08 (−0.28, 0.12) in the survival probability (α4 in equation (3)) and −0.11 (−0.22, 0.00) for the 
capture probability (α1 in equation (2)). The estimate of the coefficient for the existence of a prior 
capture is 1.00 (0.39, 1.52) (α3 in equation (2)). This suggests that males are less likely to access 
care, and that once an individual has entered the Island Health system, they are much more likely 
to return for care in subsequent years.

We now note some additional use cases of our model. If interest is in specific jurisdictions, at-
tention can be focused on them by filtering patients in the areas of interest. This can be especially 
useful if interest lies in jurisdictions that are more remote, or sparsely populated, where it is not 
feasible to perform PIT counts. Segmentation by other demographic information is also possible, 
but not demonstrated within this article. We look at Greater Victoria, as defined using 17 FSAs. 
Estimates of yearly and total population size are plotted in Figure 3, with values from Table C3 in 
Appendix C. The 2018 PIT count for Greater Victoria was 931.

Since cross-continuum data is not available for all healthcare authorities, we also explored using ER 
data only as a suitable alternative to estimate the size of this population. The advantage here is that the 
ER is a single point of service at each hospital, and thus, data does not need to be aggregated between a 
variety of service providers. We note that the populations enumerated by only ER interactions and us-
ing all interactions are not exactly the same. For example, there are individuals who may access MHSU 
services through a caseworker or residential care, but may never have an ER interaction. However, 
since we know the homeless population disproportionately accesses ER services at higher rates and 
the majority of interactions with the healthcare system is through ER services due to the low barrier 
to access, we expect the two populations to have significant overlap. In our case, 2,136 out of the 
2,220 (96.2%) individuals within the homeless cohort had at least 1 ER interaction. Additionally, us-
ing solely ER interactions also aligns more closely with the assumption of independence between in-
dividuals: While health service interactions are typically as-needed, nonurgent services such as vaccine 
clinics can still be influenced by social groupings coordinating appointments. In contrast, ER services 
are genuinely accessed on an as-needed basis. Another point to note is that within Island Health, hous-
ing status is not typically collected at ER interactions—thus, if one wishes to use only ER interactions, 
then housing status must be collected or provided otherwise.

Using the model ϕagt, pagbt, we found that population size estimates using only ER interactions 
give comparable point estimates to those using all interactions, albeit with wider credible intervals 
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Figure 2. Annual population size estimates for people experiencing homelessness within Island Health with 95% credible 
intervals from 2014 to 2019 using the nine models specified above. Note that model ϕagt , pagbt (upright filled triangle) was 
chosen to be the best model and results displayed for this model were from the final run with three chains, 150,000 
iterations each. For the rest of the models, results from the model selection phase, using one chain with 50,000 iterations, 
are displayed. The 2018 PIT count is shown as the star. Number of observed patients per year is shown as diamonds.
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(Figure 4, Tables C2 and C4 in Appendix C). Since ER data was only recorded from 1 April 2016 
onward, only estimates from 2017 to 2021 are reported.

5 Study limitations
As mentioned, one curious result was that we found the yearly population size estimates to de-
crease over time, see Table C2 in Appendix C, whereas the 2020/2021 PIT count is higher than 
the 2018 count. We expect the homeless population size to go up during the COVID-19 im-
pacted years, as COVID-19 has exacerbated housing insecurity in many cities within Canada: 
14% of respondents in British Columbia have identified COVID-19 as a reason for their 
most recent housing loss (Homelessness Services Association of BC, 2021). This is likely the 
main driver behind the increase between the two PIT counts. We find two possible explanations 
for this phenomenon.

The first is that this period overlaps with COVID-19, during which Island Health experienced a 
drastic decrease in service usage after March 2020. The British Columbia government purchased 
hotels to use as shelters (CBC News, 2020; Chan, 2021). This increased access to shelter may have 
contributed to a decrease in medical needs for this population. Additionally, COVID-19 reduced 
access to numerous healthcare services, notably ER services (Canadian Institute for Health 
Information, 2021) across Canada, due to reduced availability of ER beds and interpretations 
of public health restrictions or fears of contracting COVID-19 while accessing healthcare services. 
The Jolly-Seber model is unable to differentiate between nonsurvival and noncapture of individ-
uals in those years, as without post-COVID-19 data, the model cannot differentiate between those 
individuals who simply were not captured and those who left the population due to being unable 
or unwilling to access a healthcare service. As post-COVID-19 data is not available, it is unknown 
if the emigration is permanent (which would result in reduced survival in the population) or tem-
porary (which would result in reduced captures for the COVID-19-impacted years).

Secondly, as mentioned in Section 2, many individuals declare their housing status for the first 
time after their first interaction with Island Health. This suggests that there are individuals entering 
the Island Health healthcare system who are homeless, but who have not yet indicated their housing 
status, and despite having the capture history for these patients, we do not include them in our popu-
lation as we do not know that they are homeless. This likely in part explains the decrease in estimates 
over time and why we underestimate the 2020/2021 PIT count—we do not sufficiently account for 
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Figure 3. Annual population size estimates for Greater Victoria from 2017 to 2021 using model ϕagt , pagbt : Medians 
and 95% credible intervals. The 2018 PIT count is shown as the star. Number of observed patients are shown as 
diamonds.
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individuals entering the population. Estimates in earlier years give more time for patients to update 
their housing status and retroactively be included in our sample, resulting in less bias in these esti-
mates. A patient who had their first interaction in 2016 has six years to indicate their housing status, 
whereas a patient with their first interaction in 2022 has less than one.

The bias caused by this lag between the first interaction and declaration of housing status causes 
the assumption of ‘Marking is accurate and reliable—no lost or misread marks’. to be violated, but 
not in a way that is seen in ecological studies. Studies quantifying the bias arising from tag loss (Cai 
et al., 2021; Cowen & Schwarz, 2006; Cowen et al., 2009; Malcolm-White et al., 2020), tag mis-
identification, for example, in photographs (Morrison et al., 2011) or in genetic tags (Lukacs & 
Burnham, 2005; Yoshizaki et al., 2011), where multiple tags are assigned to the same individual 
or a tag is read as an already existing mark, or unreported recovered tags from deceased individ-
uals in mark-recovery studies (Brook et al., 2022) exist in literature, and it has been shown that 
even small tag loss rates of 5% can cause severe overestimation of population size and inflated 
standard errors (Lee, 2002). However, in this study, we are correctly recording each individual’s 
capture history, but there are cases where we do not know that an individual should be included as 
part of the population until after their initial capture.

Since post-COVID-19 data is not currently available, it is not possible to separate the effects of the 
lag in reporting with the effects of COVID-19. Thus, for any modelling of the reporting lag or the 
effect of the reporting lag to be possible, we must have ample post-COVID-19 interaction history.

If using the model as described in this article, a solution that works in theory is to include inter-
actions as capture histories for all patients, not just those who are recorded as homeless. Then, 
similarly to data augmentation, a parameter to indicate if that individual is in the population 
(i.e. homeless or not) can be modelled, possibly using their capture histories or complete pattern 
of service utilization and demographic information. For example, we may be able to identify prox-
ies for a homeless living arrangement, such as extended stays in sobering centres. This would also 
allow for modelling a changing homeless status through time, as each patient’s patterns of service 
utilization will change over time. As an alternative to the model described within this article, we 
would now have a mixture of declared and undeclared homeless individuals, a mixture model on 
detection probabilities, such as those described within (Pledger & Phillpot, 2008) could also be 
used. However, in practice, this method of including capture histories for all patients may not 
be feasible, due to computational limitations and data privacy. The current computational 
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Figure 4. Annual population size estimates for Island Health Authority using model ϕagt , pagbt : Medians, along with 
95% credible intervals. Estimates and credible intervals generated using all interactions (circle) and ER interactions 
(triangle) are shown.
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environment where Island Health data is allowed to be stored, accessed, and processed, cannot 
process much more than 5,000 rows, including both patients and augmented individuals, with 
the model described within this article. Thus, including all patients’ capture histories when fitting 
the model and performing MCMC cannot be easily applied in practice, especially using data ex-
tracts from healthcare records, as many jurisdictions have similar data privacy safeguards in place. 
Thus, different or more efficient statistical methods to quantify the underestimation resulting from 
lag in reporting homelessness must be developed, especially since having up-to-date estimates of 
the population size is imperative for service planning.

6 Conclusions and future work
In this article, we used data extracts from electronic health records to estimate the annual homeless 
population size within the Island Health region in British Columbia. We note again that the esti-
mates are not an estimate of the total population size of the Vancouver Island homeless popula-
tion, but rather the population of adults who may interact with healthcare services within 
Island Health. We proposed a flexible capture–recapture model, which gives estimates that are 
sensible compared to existing PIT counts, meaning that enumeration of persons contending 
with homelessness can be done with reduced cost and increased frequency compared with PIT 
counts, contingent on the quality of the data. Using this model, we demonstrated how to perform 
model selection for the inclusion of covariates using WAIC. Our model can be used at different 
time scales and for specific segments of the population, allowing for better planning of health serv-
ices. Finally, we explored using only ER interactions instead of full cross-continuum data, and 
found that estimates using only ER interactions give comparable point estimates to those using 
all interactions, albeit with wider credible intervals, suggesting that this model can be extended 
to other health jurisdictions which may not have records for all cross-continuum healthcare inter-
actions, but have ER interaction records.

The issues discussed in Section 5 motivates us to find ways to use the PIT counts to correct for 
this underestimation. This would require the use of complex integrated data techniques (Abadi 
et al., 2010; Besbeas et al., 2005, 2002, 2003; Borysiewicz et al., 2009; Chandler & Clark, 
2014; Schaub & Abadi, 2011), which would allow us to use multiple dependent data sources in 
the model. The PIT counts referenced within this article are an undercount and represent only 
those individuals who were available at the site of the count during the 24-hr count period. 
Thus, they represent a lower bound on the number of individuals in our population at that 
time, and can be used to correct for any individuals who have not yet indicated their housing status 
to Island Health. Using integrated data modelling techniques will also allow us to better under-
stand the current data source, which is technically comprised of two sources—self-reported hous-
ing status from the MRR, and designated homeless as part of the decampment initiative—with an 
overlap. In this case, we cannot assume independence between these two groups, nor can we as-
sume that these samples are from a closed system.

Additional work on addressing the healthcare needs of the homeless population by using elec-
tronic health records can be done by expanding our methodology to achieve more accurate esti-
mates of the population size, which would require more data than we currently have. This 
study illustrates a potential use of electronic health records, and provides the organizations who 
are collecting the data—the regional health authorities and the provincial Ministries of Health 
—with an incentive to upgrade the accuracy and frequency of data collection. We stress the im-
portance of healthcare authorities collecting more granular data that tracks each individual’s 
housing status through time, and for this information to be collected on intake at a greater variety 
of services, such as at ER interactions, so data can be collected more often for more patients.

Firstly, homelessness is a continuum and can be seen as a latent state of an individual, for ex-
ample, a homeless state can be viewed as a Markov process. Many individuals experience homeless-
ness as a fluid experience (Czechowski et al., 2022), where their housing circumstances change 
dramatically and frequently (Gaetz et al., 2012), and it is estimated that up to 11% of homeless in-
dividuals experience episodic or cyclic homelessness (Aubry et al., 2013), where they experience 
multiple homeless episodes for relatively short periods of time. The homeless population consti-
tutes an open system, as people move in and out of the state of homelessness or between the different 
modes of homelessness, and are also spatially mobile as they move to and from other 
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neighbourhoods/enumeration areas. Typical open population models in ecological studies account 
for an underlying birth and death process and migration process, an additional process where in-
dividuals can enter and exit homelessness multiple times must be considered. These considerations 
were not in the scope of this article, as currently, the housing status for each individual is not up-
dated if it changes, making this impossible to model presently. If the data required becomes avail-
able, future work in this area involves modelling the way individuals transition between different 
housing states through time using a multi-state model, similarly to accounting for temporary emi-
gration; see for example, (Kéry & Schaub, 2011, Chapter 9). Alternatively, if we can identify pat-
terns of service utilization (service class or a combination of services classes) that act as a proxy or 
predictors (i.e. for a classification algorithm) for the homelessness state through time, we can de-
velop a multi-event capture–recapture model which models uncertainty in state assignment 
(Pradel, 2005). In particular, we are interested in transitions from being housed to being homeless, 
as the effects of being homeless can be permanent—the supports an individual needs often do not go 
away after becoming housed. Healthcare-related risks of being homeless, as well as changes in pat-
terns of service use before and after a homeless individual becomes housed, should be explored as 
well.

Secondly, our future direction also involves modelling not only the population size, but the load 
on the healthcare system by the homeless. There is large variance in how much the homeless popu-
lation uses various healthcare services, and as such, the load on the system cannot be calculated 
using a simple count of the number of services used. Approximately one in four homeless have 
been reported to be unable to receive necessary medical care when required (Kushel et al., 
2002, 2001; Vohra et al., 2022), and this research may identify and quantify the gaps in care. 
Infectious disease spread and the prevalence of emerging infectious diseases, including 
COVID-19 and pandemic response for the homeless population, can also be explored.

Finally, these methods could be used to explore homeless populations interacting with health-
care systems in other cities, and results can be rolled out with data from other jurisdictions for 
similar studies. This includes jurisdictions not in Canada, where rates of access to care may be low-
er, for example, in San Francisco, where only 40% of homeless respondents had one or more ER 
interactions in the previous year (Kushel et al., 2002).
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Appendix A. Age and gender distribution
Figure A1 shows the distribution of ages and gender of the homeless population as of 31 March 
2022 for those individuals that are not known to be deceased at that date. Each bar corresponds 
with 1 year.
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Appendix B. PIT counts for vancouver Island
PIT counts for homeless populations are available for 2018 (Homelessness Services Association of 
BC and Urban Matters and BC Non-Profit Housing Association, 2018) and 2020/2021 
(Homelessness Services Association of BC, 2021) for the province of British Columbia. These re-
ports aggregate results from provincially funded counts, federally funded counts, and independent 
counts. We can compare our estimates with PIT counts for the areas within the Island Health jur-
isdiction. This spans several PIT counts—in particular, we consider the counts in eight communi-
ties: Campbell River, Comox Valley, Parksville/Qualicum, Port Alberni, Nanaimo, Duncan, 
Greater Victoria, and Salt Spring Island. This is not an exhaustive list of all areas on Vancouver 
Island; however, other jurisdictions are less populated and would not contribute significantly to 
the total count on the island. The PIT counts are summarized in Table B1: 1,884 in 2018 and 
2,149 in 2020/2021.
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Appendix C. Annual estimates
Annual population size estimates from the various models are presented in Tables C1, C2, C3, and C4.

Table B1. PIT counts for several locations within Island Health for years 2018 and 2020/2021 (Homelessness 
Services Association of BC, 2021; Homelessness Services Association of BC and Urban Matters and BC Non-Profit 
Housing Association, 2018)

Area 2018 count 2020/2021 count

Campbell river 81 116

Comox valley 117 132

Parksville/Qualicum 42 87

Port Alberni 147 125

Nanimo 301 406

Duncan 150 129

Greater Victoria 931 1,008

Salt Spring Island 115 146

Total 1,884 2,149

Table C1. Annual population size estimates and 95% CIs from 2014 to 2021 using the models from the model 
selection phase

Year ϕagt , pagb∗t ϕagt , pagbt ϕagt , pagt ϕat , pabt ϕat , pat

2014 456 (282, 643) 2,465 (2,009, 2,738) 272 (190, 392) 579 (312, 881) 287 (187, 420)

2015 563 (387, 710) 2,045 (1,886, 2,215) 856 (632, 1,191) 1,591 (1,188, 1,887) 853 (611, 1,140)

2016 1,636 (1,485, 1,867) 2,066 (1,974, 2,139) 1,613 (1,549, 1,693) 1,934 (1,821, 2,030) 1,600 (1,544, 1,670)

2017 1,828 (1,775, 1,960) 2,038 (1,948, 2,115) 1,820 (1,801, 1,841) 1,942 (1,875, 2,005) 1,821 (1,802, 1,843)

2018 1,975 (1,894, 2,054) 2,027 (1,955, 2,085) 1,909 (1,894, 1,927) 1,973 (1,936, 2,022) 1,909 (1,894, 1,927)

2019 1,943 (1,909, 1,991) 2,007 (1,972, 2,049) 1,928 (1,913, 1,946) 1,977 (1,943, 2,014) 1,927 (1,912, 1,944)

2020 1,850 (1,825, 1,884) 1,878 (1,854, 1,902) 1,839 (1,825, 1,856) 1,862 (1,841, 1,887) 1,840 (1,825, 1,856)

2021 1,644 (1,625, 1,681) 1,651 (1,629, 1,677) 1,635 (1,621, 1,652) 1,644 (1,626, 1,663) 1,636 (1,619, 1,655)

Year ϕgt , pbgt ϕgt , pgt ϕt , pbt ϕt , pt

2014 498 (368, 675) 329 (190, 517) 870 (550, 1,069) 263 (184, 369)

2015 1,252 (1,011, 1,664) 864 (662, 1,147) 1,522 (1,246, 1,847) 788 (609, 985)

2016 1,907 (1,813, 1,964) 1,600 (1,539, 1,683) 1,862 (1,720, 2,042) 1,614 (1,550, 1,705)

2017 1,893 (1,847, 1,939) 1,820 (1,802, 1,840) 1,941 (1,864, 2,044) 1,820 (1,801, 1,839)

2018 1,953 (1,923, 1,982) 1,910 (1,895, 1,928) 1,970 (1,930, 2,024) 1,910 (1,895, 1,927)

2019 1,958 (1,934, 1,989) 1,927 (1,912, 1,944) 1,977 (1,941, 2,018) 1,928 (1,913, 1,946)

2020 1,855 (1,836, 1,877) 1,838 (1,824, 1,855) 1,862 (1,839, 1,887) 1,838 (1,824, 1,855)

2021 1,639 (1,624, 1,661) 1,635 (1,619, 1,655) 1,641 (1,622, 1,663) 1,634 (1,619, 1,651)
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